CANDIFF CREEK RESTORATION PROJECT ANNUAL MONITORING REPORT FOR 2015 (YEAR 4)

NCDEQ-DMS Project Number: 92767

<u>Submitted to:</u> NCDEQ – Division of Mitigation Services 2728 Capital Blvd, Suite 1H 103 Raleigh, NC 27604

Submitted by:

Surry Soil and Water Conservation District 220 Cooper Street P.O. Box 218 Dobson, NC 27017

Prepared by: Michael Baker Engineering, Inc.

November 2015 FINAL

TABLE OF CONTENTS

1.0	EXI	ECUTIVE SUMMARY	
2.0	PRO	DJECT BACKGROUND	
2.1		oject Objectives	
2.2		roject Structure, Restoration Type and Approach	
2.3		ocation and Setting	
2.4		roject History and Background	
2.5		oject Plan	
3.0	PR(DJECT CONDITION AND MONITORING RESULTS	
3.1	V	egetation Assessment	
3	3.1.1	Description of Vegetative Monitoring	
3	3.1.2	Vegetative Success Criteria	
3	3.1.3	Vegetative Observations and Results	
3	3.1.4	Vegetative Problem Areas	
3	3.1.5	Vegetation Photographs	
3.2	St	ream Assessment	
3	3.2.1	Morphometric Success Criteria	
3	3.2.2	Morphometric Results	
3	3.2.3	Hydrologic Criteria	15
3	3.2.4	Hydrologic Monitoring Results	
3	3.2.5	Stream Problem Areas	
3	3.2.6	Stream Photographs	
3	3.2.7	Stream Stability Assessment	
3	3.2.8	Quantitative Measures Summary Tables	
4.0	OV	ERALL CONCLUSIONS AND RECOMMENDATIONS	
5.0	WII	DLIFE OBSERVATIONS	
6.0	REI	FERENCES	
	/-		AV

APPENDICES

APPENDIX A - Vegetation Data **APPENDIX B** - Geomorphic Data

Attached CD – Photographs

LIST OF TABLES

- **Table 1.**Design Approach for the Candiff Restoration Project
- **Table 2.**Project Activity and Reporting History
- Table 3.Project Contacts
- **Table 4.**Project Background
- **Table 5.**Vegetation Species Planted Across the Restoration Project
- **Table 6.**Verification of Bankfull Events
- **Table A.1.**Vegetation Metadata
- **Table A.2.**Vegetation Vigor by Species
- **Table A.3.**Vegetation Damage by Species
- **Table A.4.**Vegetation Damage by Plot
- **Table A.5.**Planted Stems by Plot and Species
- **Table A.6.**Plot Species and Densities
- **Table B.1.** Categorical Stream Feature Visual Stability Assessment
- **Table B.2.**Baseline Stream Summary
- **Table B.3.**Morphology and Hydraulic Monitoring Summary

LIST OF FIGURES

Figure 1.	Vicinity Map of Candiff Creek Restoration Project.
Figure 2.	Summary Map of Candiff Creek Restoration Project.
Figure 3A.	As-built Plan Sheet 1 for the Candiff Creek Restoration Project.
Figure 3B.	As-built Plan Sheet 5 for the Candiff Creek Restoration Project.
Figure 3C.	As-built Plan Sheet 5A for the Candiff Creek Restoration Project.
Figure 3D.	As-built Plan Sheet 5B for the Candiff Creek Restoration Project.
Figure 3E.	As-built Plan Sheet 5C for the Candiff Creek Restoration Project.
Figure 3F.	As-built Plan Sheet 5D for the Candiff Creek Restoration Project.
Figure 3G.	As-built Plan Sheet 5E for the Candiff Creek Restoration Project.
Figure 4.	Current Condition Plan View Figure Index
Figure 4A.	Current Condition Plan View Figure 4A
Figure 4B.	Current Condition Plan View Figure 4B
Figure 4C.	Current Condition Plan View Figure 4C

1.0 EXECUTIVE SUMMARY

This Annual Monitoring Report details the monitoring activities during 2015 (Monitoring Year 4) for the Candiff Creek Restoration Project ("Site"). As per the approved Mitigation Plan for the Site, this Annual Monitoring Report presents stream geometry data, stem count data from vegetation monitoring stations, and discusses any observed tendencies relating to stream stability and vegetation survival success.

Prior land use on the Site consisted primarily of pasture and forest. Candiff Creek had been channelized and riparian vegetation was cleared in the lower half of the site. The upstream reaches of the project had a narrow, early successional buffer that included several exotic vegetation species. Prior to restoration, Candiff Creek was incised and lacked bedform diversity. As a result, channel degradation was widespread throughout the Site.

A total of 13 monitoring plots, 100 square meters (m^2) (10m x 10m) in size, are used to predict survivability of the woody vegetation planted on the Site. Data from Year 4 monitoring for the 13 vegetation plots exhibited a survivability range of 40 to 931 stems per acre. The data showed that the Site had an average survivability of 735 stems per acre following Year 4 monitoring.

During Year 4 monitoring, kudzu (*Pueraria montana*) was present on the Site in the vicinity of vegetation plot 13 and in the general vicinity. This concentration of kudzu was previously treated during construction and remnants are still present within the easement. The kudzu is located on the upstream portion of Reach M1, downstream of River-Siloam Road. This area was treated once in early August 2015 and once in late August 2015 by use of the herbicides Glyphosate and Triclopyr. Any remaining kudzu in this area will be treated again during the early growing season 2016.

Vegetation Plots 1 through 12 on reach M2 and M3 did not exhibit any invasive or aggressive species occurring on the Site.

Also, additional stream enhancement work along M1 and UT1 was completed in September 2015. Bankfull benches were excavated and vertical stream banks were sloped to stable angles. In addition, vane structures and toe wood were installed along meander bends to protect the stream banks, provide additional habitat, and to provide long-term stream bank stabilization. No additional credit is being requested as a result of this work. During this time, the existing kudzu plants and roots were cleared within a large portion of the easement area. Per the permit conditions for the enhancement work, monitoring along M1 and UT1 will be conducted for a minimum of one additional year beyond the monitoring required in the mitigation plan. This monitoring will include visual assessments conducted twice per year and the installation and annual monitoring of two bank pin arrays installed in the outside of meander bends.

Property boundary fencing in the M1 vicinity was installed during the summer of 2015. This fence allows the landowner to graze cattle outside of the fenced conservation easement which will prevent kudzu re-establishment.

Additional bare-root trees will be planted during the winter of 2015 in the riparian buffer areas along M1 and UT1 to increase density and to offset mortality from treating kudzu.

Cross-sectional monitoring data for stream stability were collected during Year 4 monitoring. A longitudinal profile survey was completed during Year 4 monitoring for approximately 3,542 linear feet (LF) of stream on the Site. The longitudinal profile was completed for Reach M3 only.

The cross-sectional data and the longitudinal profile indicate that Reach M3 is stable and functioning as designed.

Two pools located at stations 46+50 and 55+50 have exhibited areas of erosion during Year 4 monitoring. The erosional areas observed are occurring on the outer bend below the root wads and are approximately 10 feet or less in length.

According to the on-site crest gauge, the Site experienced at least two significant bankfull flow events during Year 4 monitoring. The largest on-site bankfull flow event documented at the M3 crest gauge occurred on April 20, 2015. It is estimated that the height of highest flow at the M3 crest gauge observed in Year 4 was approximately 2.85 feet above bankfull stage.

In summary, after remedial activities planned in winter 2015 and summer 2016, to control kudzu and improve tree density along M1, the Site is on track to meet the hydrologic, vegetative, and stream success criteria as specified in the Site Restoration Plan in all areas.

2.0 PROJECT BACKGROUND

The project involved the restoration of 4,081 linear feet (LF) of stream, 1,757 of stream Enhancement (265 LF of Enhancement I and 1,492 LF of Enhancement II) and 1,200 LF of stream preservation. The final stream lengths for all reaches are shown in Table 1 and Figure 2 and summarizes the restoration zones on the Site. A total of 27.54 acres of stream and riparian buffer are protected through a permanent conservation easement.

2.1 Project Objectives

The specific goals for the Candiff Creek Restoration Project were as follows:

- Create geomorphically stable conditions along Candiff Creek through the project area
- Prevent cattle from accessing the project reaches, reducing excessive bank erosion,
- Improve habitat quality in a riffle dominated stream by adding pool/riffle sequences and expanding the floodplain, while improving overall ecosystem functionality
- Improve water quality within the Candiff Creek Restoration Project area through reduction of bank erosion and reductions in nutrient and sediment loads
- Stabilize streambanks through installation of in-stream structures and establishing a riparian buffer consisting of native plant species
- Improve aquatic and terrestrial habitat through increased substrate and in-stream cover, additional woody debris, and reduced water temperature by increasing stream shading, and restored terrestrial habitat.

2.2 Project Structure, Restoration Type and Approach

For analysis and design purposes, Michael Baker International (Baker) divided on-site streams into reaches. The reaches were numbered sequentially from upstream to downstream, with a "M" designation for the "mainstem" and a "UT" designation for unnamed tributaries. Two UTs are located on the Site (labeled UT1 and UT2). The on-site streams are described as follows: M1 begins on the upstream section of the Site at the River-Siloam Road culvert, and then flows southward to the confluence with UT2. M2 begins at the M1/UT2 confluence and flows south 265 feet to the beginning of the restored portion of the mainstem. M3 begins at the restored channel and then flows southeastward for 4,123 feet and terminates at the property line adjacent to the Yakin Valley Railroad right-of-way located at the downstream end of the Site. UT1 flows onto the Site from the southern Wall property line and flows southward for 885 feet to the confluence with M1. UT2 flows onto the Site from the eastern Aztar Group, LLC property line and flows eastward for 1,162 feet and terminates at the M1/M2 transition. The reaches described above are presented in the plan sheets located in Figures 3A through Figure 3J.

The restoration design allows stream flows greater than the bankfull discharge, to spread onto the floodplain, dissipating flow energies and reducing stress on streambanks. In-stream structures were used to control streambed grade, reduce streambank stress, and promote bedform sequences and habitat diversity. The in-stream structures installed consist of constructed riffles, cover logs, log/rock vanes, log/rock j-hook vanes, rock cross vanes, vegetated geolifts, vegetated brush mattresses and root wads. These structures promote a diversity of habitat features in the restored channel. Where grade control was a consideration, constructed riffles, grade control rock j-hook vanes, and rock cross vanes were installed to provide long-term stability. Streambanks were stabilized using a combination of

erosion control matting, temporary and permanent seeding, live stakes, transplants, brush mattresses and geolifts. Transplants provide areas for living root mass to increase streambank stability and also to create holding areas for fish and aquatic biota.

The purpose of the project is to restore stream functions to the impaired reaches the Site. Native species vegetation was planted across the Site and the entire project area is protected through a permanent conservation easement.

			Candiff Creek	Restoration Pro	oject: DMS Pro	oject No. 927	67	
Project Segment or Reach ID	Existing Feet/Acres	Mitigation Type *	Approach**	Linear Footage	Mitigation Ratio	Mitigation Units	Stationing	Comment
M1	690	Е	EII	690	2.5:1	276	10+00 - 17+35	Invasive species vegetation removal and buffer planting; 45 LF of stream length removed for one stream crossing.
M2	265	Е	EI	265	1.5:1	177	17+35 - 20+00	Installed in-stream structures to control grade and reduce bank erosion
M3	3,828	R	P1, P2	4,081	1:1	4,081	20+00 - 61+23	Invasive species removal and buffer planting; 42 linear feet of stream length removed for two stream crossings
UT1 (Lower Reach)	885	Е	EII	485	2.5:1	194	14+00 - 18+85	Invasive species vegetation removal, buffer planting, and livestock exclusion fencing.
UT1 (Upper Reach)	885	Р	N/A	400	5:1	80	10+00 - 14+00	Preservation area - no construction activities in this area
UT2 (Lower Reach)	1,117	Е	EII	317	2.5:1	127	18+00 - 21+62	Invasive species vegetation removal, buffer planting, and livestock exclusion fencing. 45 LF of stream length removed for one stream crossing.
UT2 (Upper Reach)	1,117	Р	N/A	800	5:1	160	10+00 - 18+00	Preservation area - no construction activities in this area
				Mitigation Uni	t Summations			
Stream (SMU) Riparian Wetland (Ac)		Non-riparian Wetland (Ac)		Total Wetland (Ac)		Planted Riparian Buffer (Ac)	Permanent Conservation Easement (Ac)	
5,095	0	0 0		0		17.31	27.54	
<u>.</u>	$\mathbf{E} = \mathbf{F}$	Restoration Enhancement Preservation	** $P1 = Prior$ P2 = Prior EII = Enha	•				

Table 1. De	sign Annroach f	or the Candiff	Creek Restoration	Project
	Sign rippi oach i	or the Canani	CITCER INCOLUTION	

2.3 Location and Setting

The Site is located in Surry County in western North Carolina, approximately 1.75 miles west of Siloam Township, and just north of the Surry-Yadkin County line, as shown in Figure 1. The Site lies in the Yadkin Pee-Dee River Basin, within the US Geological Survey (USGS) and North Carolina Department of Environmental Quality Division of Mitigation Services (NCDEQ DMS) subbasin 03040101 (previously categorized as subbasin 03-07-02) and Targeted Local Watershed (TLW) 03040101-110060 of the Yadkin Pee Dee River Basin.

2.4 Project History and Background

Land use at the Site consists primarily of pasture and forest. Candiff Creek had been channelized and riparian vegetation had been cleared at the lower half of the Site. The upstream end of the Site had a narrow, early successional buffer that included several exotic vegetation species. Prior to restoration, Candiff Creek was incised and lacked bedform diversity. As a result, channel degradation was widespread throughout the Site.

The chronology of the Candiff Creek Restoration Project is presented in Table 2. The contact information for the designers, contractors, and relevant suppliers is presented in Table 3. Relevant project background information is provided in Table 4.

2.5 Project Plan

Plans illustrating the as-built conditions of the major project elements, locations of permanent monitoring cross-sections, and locations of permanent vegetation monitoring plots are presented in Figures 3A through 3G of this report. In addition to the as-built plans, a Current Condition Plan View Map (Figure 4 through 4c) set is included in the Figures section in this report.

Candiff Creek Restoration Project: DMS Project No. 92767						
Activity or Report	Scheduled Completion	Data Collection Complete	Actual Completion or Delivery			
Restoration Plan Prepared	Jul-10	N/A	Jul-10			
Restoration Plan Amended	Aug-10	N/A	Aug-10			
Restoration Plan Approved	Aug-10	N/A	Aug-10			
Final Design – (at least 90% complete)	Jul-10	N/A	Jun-11			
Construction Begins	N/A	N/A	Sep-11			
Temporary S&E mix applied to entire project area	N/A	N/A	Apr-12			
Permanent seed mix applied to entire project area	N/A	N/A	Apr-12			
Planting of live stakes	N/A	N/A	Apr-12			
Planting of bare root trees	N/A	N/A	Apr-12			
End of Construction	NA	N/A	Mar-12			
Survey of As-built conditions (Year 0 Monitoring- baseline)	N/A	Mar-12	Mar-12			
Year 1 Monitoring	Oct-12	Oct-12	Dec-12			
Year 2 Monitoring	Oct-13	Nov-13	Dec-13			
Year 3 Monitoring	Oct-14	Nov-14	Nov-14			
Year 4 Monitoring	Oct-15	Oct-15	Oct-15			
Year 5 Monitoring	Oct-16	Oct-16	Oct-16			
Year 6 Monitoring ¹	Oct-17	Oct-17	Oct-17			

 Table 2. Project Activity and Reporting History

Candiff Creek Restoration	on Project: DMS Project No. 92767		
Designer Michael Baker Engineering, Inc.	797 Haywood Road, Suite 201 Asheville, NC 28806 <u>Contact:</u> Jake Byers, P.E., Telephone: 828-350-1408		
Construction Contractor River Works, Inc.	6105 Chapel Hill Road Raleigh, NC 27607 <u>Contact:</u> Bill Wright, Telephone: 336-279-1002		
Planting Contractor River Works, Inc.	6105 Chapel Hill Road Raleigh, NC 27607 <u>Contact:</u> Bill Wright, Telephone: 336-279-1002		
Seeding Contractor River Works, Inc.	6105 Chapel Hill Road Raleigh, NC 27607 <u>Contact:</u> Bill Wright, Telephone: 336-279-102		
Seed Mix Sources Nursery Stock Suppliers	Green Resources, 336-855-6363 ArborGen, Inc., 843-528-3204		
Monitoring Performers Michael Baker Engineering, Inc.	797 Haywood Road, Suite 201 Asheville, NC 28806		
Stream Monitoring Point of Contact: Vegetation Monitoring Point of Contact:	Jake Byers, P.E., Telephone: 828-350-1408 Jake Byers, P.E., Telephone: 828-350-1408		

Table 3. Project Contacts

Project County: Surry County, NC Drainage Area: Reach: square miles (mi ²): M1 2.35 M2 2.53 M3 2.74 UT1 0.06 UT2 0.14 Estimated Drainage % Impervious Cover:	Candiff Creek Restoration Project: DMS Project No. 92767					
Drainage Area: Reach: square miles (mi ³): M1 2.35 M2 2.53 M3 2.74 UT1 0.06 UT2 0.14 Estimated Drainage % Impervious Cover:		ý				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			· · ·			
$\begin{array}{ccccccc} & M2 & 2.53 \\ M3 & 2.74 \\ UT1 & 0.06 \\ UT2 & 0.14 \\ \end{array}{2}$ Estimated Drainage % Impervious Cover: $& & & & & & & & & & & & & & & & & & &$		Reach:	square miles (mi ²):			
M3 UT12.74 0.06 0.67Estimated Drainage % Impervious Cover:0.14Estimated Drainage % Impervious Cover:W1, M2, M3, UT1, UT2<5%		M1	2.35			
UT1 UT20.06 UT2Estimated Drainage % Impervious Cover:M1, M2, M3, UT1, UT2<5%		M2	2.53			
UT20.14Estimated Drainage % Impervious Cover:<5%		M3				
Estimated Drainage % Impervious Cover: M1, M2, M3, UT1, UT2 <5% Stream Order: UT1 1 1 UT2 2 M1, M2, M3 3 Physiographic Region Pidemont Ecoregion Northern Inner Piedmont Ecoregion Northern Inner Piedmont Ecoregion Northern Inner Piedmont Ecoregion Northern Inner Piedmont Rosgen Classification* of As-built M1, M2, M3 C UT1 (Lower Reach) N/A UT1 (Lower Reach) N/A UT1 (Upper Reach) N/A UT2 (Lower Reach) N/A UT2 (Lower Reach) N/A Cowardin Classification*: M1, M2, M3, UT2 Riverine, Upper Perennial, Cobble-Gravel UT1 (Upper Reach) N/A Cowardin Classification*: M1, M2, M3, UT2 Riverine, Intermittent, Cobble-Gravel UT1 (Upper Reach), UT2 (Upper Reach) UT1 (Upper Reach), UT2 (Upper Reach) Cash Con-site Segment USGS HUC for Project and Reference: M1, M2, M3, UT1, UT2 C Any portion of any project segment ustream of a 303d listed Reasons for 303d listing or stressor? N/A						
M1, M2, M3, UT1, UT2<5%Stream Order:UT11UT221UT22M1, M2, M3Physiographic RegionNorthern Inner PiedmontEcoregionNorthern Inner PiedmontRosgen Classification* of As-built:KM1, M2, M3CUT1 (Lower Reach)N/AUT1 (Lower Reach)N/AUT1 (Upper Reach)N/AUT2 (Lower Reach)N/AUT2 (Lower Reach)N/AUT2 (Lower Reach)N/AUT1 (Upper Reach)N/AUT2 (Lower Reach)N/ADominant Soil Types*:Kiverine, Upper Perennial, Cobble-GravelUT1 (Upper Reach)Kiverine, Intermittent, Cobble-GravelUT1 (Upper Reach)ScaAUT1 (Upper Reach)ScaAUT1 (Upper Reach), UT2 (UpperFsEUT1 (Upper Reach), UT2 (Lower Reach)CsAUT1 (Upper Reach), UT2 (UpperFsEUT1 (Upper Reach), UT2 (UpperFsEUT1 (Upper Reach), UT2 (UpperFsEUT1 (Upper Reach), UT2 (UpperFsEUT1 (Upper Reach), UT2 (UpperScaAUT1 (Upper Reach), UT2 (UpperScaANCDWQ Sub-basin03-07-02NCDWQ classification for Project and Reference: M1, M2, M3, UT1, UT2CAny portion of any project segment upstream of a 303d listedNoAny portion of any project segment upstream of a 303d listedNoReasons for 303d listing or stressor?N/A			0.14			
Stream Order:UT11UT22M1, M2, M33Physiographic RegionPiedmontEcoregionNorthern Inner PiedmontRosgen Classification* of As-built:Northern Inner PiedmontM1, M2, M3CUT1 (Lower Reach)N/AUT1 (Lower Reach)N/AUT2 (Lower Reach)N/AUT1 (Upper Reach)N/ACowardin Classification*:Intermittent, Cobble-GravelUT1Riverine, Intermittent, Cobble-GravelUT1UT1UT1 (Upper Reach), UT2 (Upp	Estimated Drainage % Impe		70/			
$ \begin{array}{cccc} UT1 & 1 \\ UT2 & 2 \\ M1, M2, M3 & 3 \\ \hline \end{tabular} \\ \hline Physiographic Region & Northern Inner Piedmont \\ \hline \end{tabular} \\ \hline \$		M1, M2, M3, UT1, UT2	<5%			
$\begin{tabular}{ c c c c } UT2 & 2 \\ M1, M2, M3 & 3 \end{tabular}$ $\begin{tabular}{ c c c c c c c } Piedmont & Piedmont \\ \hline Rosgen Classification* of \\ As-built: & & & \\ M1, M2, M3 & C \\ UT1 (Lower Reach) & N/A \\ UT1 (Upper Reach) & N/A \\ UT1 (Upper Reach) & N/A \\ UT2 (Lower Reach) & N/A \\ UT2 (Lower Reach) & N/A \\ UT2 (Upper Reach) & N/A \\ UT1 (Upper Reach) & N/A \\ \hline UT2 (Upper Reach) & N/A \\ \hline UT1 (Upper Reach) & V/A \\ \hline UT1 (Upper Reach) & FsE \\ UT1 (Upper Reach) & FsE \\ UT1 (Upper Reach) & FeC2 \\ \hline Reference site ID & & On-site \\ \hline USGS HUC for Project & On-site \\ \hline USGS HUC for Project and Reference: \\ M1, M2, M3, UT1, UT2 & C \\ Any portion of any project segment 303d listed? & No \\ Any portion of any project segment of a 303d listed segment? & No \\ \hline Reasons for 303d listing or stressor? & N/A \\ \hline \end{tabular}$	Stream Order:	T 177-1	1			
M1, M2, M3 3 Physiographic Region Piedmont Ecoregion Northern Inner Piedmont Rosgen Classification* of As-built: As-built: M1, M2, M3 C UT1 (Lower Reach) N/A UT2 (Lower Reach) N/A UT2 (Lower Reach) N/A UT2 (Lower Reach) N/A UT2 (Lower Reach) N/A Cowardin Classification*: Riverine, Upper Perennial, Cobble-Gravel M1, M2, M3, UT2 Riverine, Intermittent, Cobble-Gravel Dominant Soil Types*: Site M1, M2, M3, UT1 (Lower Reach), UT2 (Lower Reach), UT1 (Upper Reach), UT2 (Lower Reach), UT1 (Upper Reach), UT1 (Upper Reach), UT1 (Upper Reach), UT1 (Upper Reach), UT1 (Upper Reach), UT2 (Lower Reach), UT1 (Upper Reach), UT2 (Lower Reach), UT1 (Upper Reach), UT2 (Lower Reach), UT1 (Upper Reach), UT2 (Lower Re						
Physiographic Region Piedmont Ecoregion Northern Inner Piedmont Rosgen Classification* of As-built: M1, M2, M3 C UT1 (Lower Reach) N/A UT1 (Upper Reach) N/A UT2 (Lower Reach) N/A UT2 (Lower Reach) N/A Cowardin Classification*: M1, M2, M3, UT2 M1, M2, M3, UT2 Riverine, Upper Perennial, Cobble-Gravel UT1 Riverine, Intermittent, Cobble-Gravel Dominant Soil Types*: M1, M2, M3, UT1 (Lower Reach), UT2 (Lower Reach) CsA UT1 (Upper Reach), UT2 (Upper Reach), CsA UT1 (Upper Reach), UT2 (Upper Reach), FsE UT1 (Upper Reach), UT2 (Upper Reach), Gravel UT1 (Upper Reach), UT2 (Upper Reach) CsA UT1 (Upper Reach), UT2 (Upper Reach) Gravel UT1 (Upper Reach), UT2 (Upper Reach) FsE UT1 (Upper Reach) Gravel NO Sold 0101 NCDWQ slassification for Project and Reference: M1, M2, M3, UT1, UT2 M1, M2, M3, UT1, UT2 C Any portion of any project segment 303d listed? No						
Northern Inner PiedmontRosgen Classification* of As-built:M1, M2, M3CM1, M2, M3VI1 (Lower Reach)N/AUT1 (Lower Reach)N/AUT2 (Lower Reach)N/AUT2 (Upper Reach)N/ACowardin Classification*:N/AUT1Riverine, Upper Perennial, Cobble-GravelUT1Riverine, Upper Perennial, Cobble-GravelUT1Riverine, Intermittent, Cobble-GravelUT1Riverine, Intermittent, Cobble-GravelDominant Soil Types*:SAUT2 (Lower Reach)CSAUT1 (Upper Reach)FSEUT1 (Upper Reach), UT2 (Upper Reach)FeC2Reference site IDOn-siteUSGS HUC for Project03040101NCDWQ classification for Project and Reference: M1, M2, M3, UT1 (UT2CM1, M2, M3, UT1, UT2CAny portion of any project segment 303d listed?NoAny portion of any project segment upstream of a 303d listed segment?NoReasons for 303d listing or stressor?N/A	Dhysiographic Pagion	M1, M2, M5				
Rosgen Classification* of As-built: M1, M2, M3 C M1, M2, M3 VT1 (Lower Reach) N/A UT1 (Upper Reach) N/A UT2 (Lower Reach) N/A UT2 (Upper Reach) N/A Cowardin Classification*: N/A M1, M2, M3, UT2 Riverine, Upper Perennial, Cobble-Gravel UT1 Riverine, Intermittent, Cobble-Gravel Dominant Soil Types*: M1, M2, M3, UT1 (Lower Reach), UT1 (Upper Reach) CsA Dominant Soil Types*: M1, M2, M3, UT1 (Lower Reach), UT1 (Upper Reach), UT2 (Upper Reach) CsA UT1 (Upper Reach), UT2 (Upper Reach) FsE On-site USGS HUC for Project 03040101 03040101 NCDWQ sub-basin 03-07-02 NCDWQ classification for Project and Reference: M1, M2, M3, UT1, UT2 C Any portion of any project segment 303d listed? No Any portion of any project segment upstream of a 303d listed segment? No No Any portion of any project segment upstream of a 303d listed						
As-built: M1, M2, M3 C UT1 (Lower Reach) N/A UT1 (Upper Reach) N/A UT2 (Lower Reach) N/A Cowardin Classification*: $UT2 (Upper Reach) UT1 UT1 N Cowardin Classification*: UT1 UT1 N N N N N N N N N N N N N N N N N N N$			Normern miller Fledmont			
UT1 (Lower Reach)N/AUT1 (Upper Reach)N/AUT2 (Lower Reach)N/AUT2 (Upper Reach)N/ACowardin Classification*:N/AM1, M2, M3, UT2Riverine, Upper Perennial, Cobble-GravelUT1Riverine, Intermittent, Cobble-GravelDominant Soil Types*:Riverine, Intermittent, Cobble-GravelDominant Soil Types*:CsAUT1 (Upper Reach)CsAUT1 (Upper Reach), UT2 (Upper Reach)FsEUT1 (Upper Reach), UT2 (Upper Reach)FsEUT1 (Upper Reach), UT2 (Upper Reach)GolduloiNCDWQ Sub-basinOn-siteNCDWQ classification for Project and Reference: M1, M2, M3, UT1, UT2On-solutionNCDWQ classification for Project and Reference: M1, M2, M3, UT1, UT2CAny portion of any project segment 303d listed?NoAny portion of any project segment upstream of a 303d listedNoReasons for 303d listing or stresor?N/A						
UT1 (Lower Reach)N/AUT1 (Upper Reach)N/AUT2 (Lower Reach)N/AUT2 (Upper Reach)N/ACowardin Classification*:N/AM1, M2, M3, UT2Riverine, Upper Perennial, Cobble-GravelUT1Riverine, Intermittent, Cobble-GravelDominant Soil Types*:Riverine, Intermittent, Cobble-GravelDominant Soil Types*:CsAUT1 (Upper Reach)CsAUT1 (Upper Reach), UT2 (Upper Reach)FsEUT1 (Upper Reach), UT2 (Upper Reach)FsEUT1 (Upper Reach), UT2 (Upper Reach)GolduloiNCDWQ Sub-basinOn-siteNCDWQ classification for Project and Reference: M1, M2, M3, UT1, UT2On-solutionNCDWQ classification for Project and Reference: M1, M2, M3, UT1, UT2CAny portion of any project segment 303d listed?NoAny portion of any project segment upstream of a 303d listedNoReasons for 303d listing or stresor?N/A		M1 M2 M3	C			
UT1 (Upper Reach) UT2 (Lower Reach) UT2 (Upper Reach)N/ACowardin Classification*:N/ACowardin Classification*:M1, M2, M3, UT2 UT1Riverine, Upper Perennial, Cobble-Gravel Reach) UT1 (Lower Reach) UT1 (Lower Reach) UT1 (Upper Reach), UT2 (Lower Reach) UT1 (Upper Reach), UT2 (Upper Reach) UT1 (Upper Reach), UT2 (Upper Reach) UT1 (Upper Reach), UT2 (Upper Reach) UT1 (Upper Reach), UT2 (Upper Reach) UT1 (Upper Reach), UT2 (Upper Reach)CsAReference site IDOn-siteUSGS HUC for ProjectOn-siteUSGS HUC for Project and Reference: M1, M2, M3, UT1, UT2O3040101NCDWQ classification for Project and Reference: M1, M2, M3, UT1, UT2CAny portion of any project segment upstream of a 303d listed segment?NoReasons for 303d listing or stressor?N/A						
UT2 (Lower Reach)N/AUT2 (Upper Reach)N/ACowardin Classification*:M1, M2, M3, UT2M1, M2, M3, UT2Riverine, Upper Perennial, Cobble-GravelUT1Riverine, Intermittent, Cobble-GravelDominant Soil Types*:CsAUT2 (Lower Reach)CsAUT2 (Lower Reach), UT2 (Upper Reach)FsEUT1 (Upper Reach), UT2 (Upper Reach)FsEUT1 (Upper Reach), UT2 (Upper Reach)On-siteUSGS HUC for ProjectOn-siteNCDWQ Sub-basin03-07-02NCDWQ classification for Project and Reference: M1, M2, M3, UT1, UT2CAny portion of any project segment 303d listed?NoAny portion of any project segment upstream of a 303d listedNoReasons for 303d listing or stressor?N/A						
UT2 (Upper Reach)N/ACowardin Classification*:Riverine, Upper Perennial, Cobble-GravelM1, M2, M3, UT2Riverine, Intermittent, Cobble-GravelDominant Soil Types*:CsAUT2 (Lower Reach) UT2 (Lower Reach), UT2 (Upper Reach)FsEUT1 (Upper Reach), UT2 (Upper Reach)FsEUT1 (Upper Reach), UT2 (Upper Reach)FsEUT1 (Upper Reach), UT2 (Upper Reach)Foc2Reference site IDOn-siteUSGS HUC for ProjectO3040101NCDWQ Sub-basin03-07-02NCDWQ classification for Project and Reference: M1, M2, M3, UT1, UT2CAny portion of any project segment 303d listed?NoAny portion of any project segment upstream of a 303d listed segment?NoReasons for 303d listing or stressor?N/A						
Cowardin Classification*:M1, M2, M3, UT2Riverine, Upper Perennial, Cobble-GravelUT1Riverine, Intermittent, Cobble-GravelDominant Soil Types*:Riverine, Intermittent, Cobble-GravelDominant Soil Types*:M1, M2, M3, UT1 (Lower Reach), UT2 (Lower Reach) UT1 (Upper Reach), UT2 (Upper Reach)Reference site IDCsAUT1 (Upper Reach), UT2 (Upper Reach)FeC2Reference site IDOn-siteUSGS HUC for ProjectO3040101NCDWQ Sub-basin03-07-02NCDWQ classification for Project and Reference: M1, M2, M3, UT1, UT2CAny portion of any project segment upstream of a 303d listed segment?NoAny portion of any project segment upstream of a 303d listed segment?NoReasons for 303d listing or stressor?N/A						
M1, M2, M3, UT2 UT1Riverine, Upper Perennial, Cobble-GravelDominant Soil Types*:Riverine, Intermittent, Cobble-GravelDominant Soil Types*:CsAM1, M2, M3, UT1 (Lower Reach) UT2 (Lower Reach) (UT2 (Lower Reach), UT2 (Upper Reach)FsEUT1 (Upper Reach), UT2 (Upper Reach)FsEVT1 (Upper Reach), UT2 (Upper Reach)FsEVT1 (Upper Reach), UT2 (Upper Reach)Foc2Reference site IDOn-siteUSGS HUC for Project03040101NCDWQ Sub-basin03-07-02NCDWQ classification for Freiet and Reference: M1, M2, M3, UT1, UT2CAny portion of any project sum upstream of a 303d listed segment?NoAny portion of any project sum upstream of a 303d listed segment?NoReasons for 303d listing or stressor?N/A		UT2 (Upper Reach)	N/A			
UT1Riverine, Intermittent, Cobble-GravelDominant Soil Types*:	Cowardin Classification*:					
Dominant Soil Types*:M1, M2, M3, UT1 (Lower Reach), UT2 (Lower Reach) UT1 (Upper Reach), UT2 (Upper Reach) UT1 (Upper Reach)CsA FsE E C2Reference site IDOn-siteUSGS HUC for Project03040101NCDWQ Sub-basin03-07-02NCDWQ classification for Project and Reference: M1, M2, M3, UT1, UT2CAny portion of any project segment 303d listed?NoAny portion of any project segment upstream of a 303d listed segment?NoReasons for 303d listing or stressor?N/A						
M1, M2, M3, UT1 (Lower Reach), UT2 (Lower Reach) UT1 (Upper Reach), UT2 (Upper Reach)CsA CsA UT1 (Upper Reach), UT2 (Upper Reach)Reference site IDFsE UT1 (Upper Reach)USGS HUC for ProjectOn-siteUSGS HUC for Project03040101NCDWQ Sub-basin03-07-02NCDWQ classification for Project and Reference: M1, M2, M3, UT1, UT2CAny portion of any project segment 303d listed?NoAny portion of any project segment upstream of a 303d listed segment?NoReasons for 303d listing or stressor?N/A		UT1	Riverine, Intermittent, Cobble-Gravel			
UT2 (Lower Reach) UT1 (Upper Reach), UT2 (Upper Reach)CsAUT1 (Upper Reach), UT2 (Upper Reach)FsEUT1 (Upper Reach)FeC2Reference site IDOn-siteUSGS HUC for Project03040101NCDWQ Sub-basin03-07-02NCDWQ classification for Project and Reference: M1, M2, M3, UT1, UT2CAny portion of any project segment 303d listed?NoAny portion of any project segment upstream of a 303d listed segment?NoReasons for 303d listing or stressor?N/A	Dominant Soil Types*:					
UT1 (Upper Reach), UT2 (Upper Reach)Reach)FsEUT1 (Upper Reach)FeC2Reference site IDOn-siteUSGS HUC for Project03040101NCDWQ Sub-basin03-07-02NCDWQ classification for Project and Reference: M1, M2, M3, UT1, UT2CAny portion of any project segment 303d listed?NoAny portion of any project segment upstream of a 303d listed segment?NoReasons for 303d listing or stressor?N/A						
ReachFsEUT1 (Upper Reach)FeC2Reference site IDOn-siteUSGS HUC for Project03040101NCDWQ Sub-basin03-07-02NCDWQ classification for Project and Reference: M1, M2, M3, UT1, UT2CAny portion of any project segment 303d listed?NoAny portion of any project segment upstream of a 303d listed segment?NoReasons for 303d listing or stressor?N/A			CsA			
UT1 (Upper Reach)FeC2Reference site IDOn-siteUSGS HUC for Project03040101NCDWQ Sub-basin03-07-02NCDWQ classification for Project and Reference: M1, M2, M3, UT1, UT2CAny portion of any project segment 303d listed?NoAny portion of any project segment upstream of a 303d listed segment?NoReasons for 303d listing or stressor?N/A			FeF			
Reference site IDOn-siteUSGS HUC for Project03040101NCDWQ Sub-basin03-07-02NCDWQ classification for Project and Reference: M1, M2, M3, UT1, UT2CAny portion of any project segment 303d listed?NoAny portion of any project segment upstream of a 303d listed segment?NoReasons for 303d listing or stressor?N/A						
USGS HUC for Project03040101NCDWQ Sub-basin03-07-02NCDWQ classification for Project and Reference: M1, M2, M3, UT1, UT2CAny portion of any project segment 303d listed?NoAny portion of any project segment upstream of a 303d listed segment?NoReasons for 303d listing or stressor?N/A						
NCDWQ Sub-basin 03-07-02 NCDWQ classification for Project and Reference: M1, M2, M3, UT1, UT2 M1, M2, M3, UT1, UT2 C Any portion of any project segment 303d listed? No Any portion of any project segment upstream of a 303d listed Segment? Reasons for 303d listing or stressor? N/A						
NCDWQ classification for Project and Reference: M1, M2, M3, UT1, UT2 C Any portion of any project segment 303d listed? No Any portion of any project segment upstream of a 303d listed segment? No Reasons for 303d listing or stressor? N/A	USGS HUC for Project					
M1, M2, M3, UT1, UT2 C Any portion of any project segment 303d listed? No Any portion of any project segment upstream of a 303d listed segment? No Reasons for 303d listing or stressor? N/A	NCDWQ Sub-basin		03-07-02			
Any portion of any project segment 303d listed?NoAny portion of any project segment upstream of a 303d listed segment?NoReasons for 303d listing or stressor?N/A	NCDWQ classification for H	Project and Reference:				
Any portion of any project segment upstream of a 303d listed segment? No Reasons for 303d listing or stressor? N/A		M1, M2, M3, UT1, UT2	С			
segment? No Reasons for 303d listing or stressor? N/A	Any portion of any project s	egment 303d listed?	No			
segment? No Reasons for 303d listing or stressor? N/A	Any portion of any project s	egment upstream of a 303d listed				
		- •	No			
% of project easement fenced 100%	Reasons for 303d listing or s	tressor?	N/A			
	% of project easement fence	d	100%			

Table 4. Project Background Table

*Rosgen, 1994; *Cowardin;*-USDA, 2007

3.0 PROJECT CONDITION AND MONITORING RESULTS

3.1 Vegetation Assessment

3.1.1 Description of Vegetative Monitoring

As a final stage of construction, the stream margins and riparian areas of the Site were planted with bare root trees, live stakes, and a seed mixture of temporary and permanent herbaceous vegetation to establish ground cover. The woody vegetation was planted randomly from the top of the stream banks to the outer edge of the project's re-vegetation limits. In general, bareroot vegetation was planted at a target density of 680 stems per acre, in an 8-foot by 8-foot grid pattern. Live stakes were installed two to three feet apart in meander bends and six to eight feet apart in the riffle cross-sections. The live stakes were set up using triangular spacing along the stream banks between the toe of the stream bank and bankfull elevation. The tree species planted at the Site are shown in Table 5. The temporary seed planted following construction was rye grain. The permanent seed mix of herbaceous species planted in the project's riparian area included: redtop (Agrostis alba), big bluestem (Andropogon gerardii), beggartick (Bidens frondosa), lanceleaf tickseed (Coreopsis lanceolata), deertongue (Pancium clandestinum), Virginia wildrye (Elymus virginicus), soft rush (Juncus effusus), switchgrass (Panicum virgatum), smartweed (Polygonum pennsylvanicum), little bluestem (Schizachyrium scoparium), Indian grass (Sorghastrum nutan), and eastern gamma grass (Tripsacum dactyloides). This seed mixture was broadcast on the Site at a rate of 15 pounds per acre. All planting was completed in April 2012.

At the time of planting, 13 vegetation plots – labeled 1 through 13 - were established on-site to monitor survival of the planted woody vegetation. Each vegetation plot is 0.025 acre in size, or 10 meters x 10 meters. All of the planted stems inside the plots were flagged to distinguish them from any colonizing individuals and to facilitate locating them in the future. The trees also were marked and labeled with aluminum metal tags to ensure that the correct identification is made during future monitoring of the vegetation plots. In addition to flagging and tags, the locations of planted stems and vegetation plot corners were recorded by use of survey equipment.

3.1.2 Vegetative Success Criteria

To characterize vegetation success criteria objectively, specific goals for woody vegetation density have been defined. Data from vegetation monitoring plots should display a surviving tree density of at least 320 trees per acre at the end of the third year of monitoring, and a surviving tree density of at least 260 five-year-old trees per acre at the end of the five-year monitoring period.

Candif	f Creek Restoration Project	: DMS Project No. 927	767	
Scientific Name	Common Name	Percent Planted by Species	Total Number of Stems	
	Bare Root Trees S	Species		
Betula nigra	river birch	23.3%	1,800	
Diospyros virginiana	persimmon	7.8%	600	
Fraxinus pennsylvanica	green ash	15.6%	1,200	
Liriodendron tulipfera	tulip poplar	7.8%	600	
Platanus occidentalis	sycamore	22.1%	1,700	
Quercus michauxii	swamp chestnut oak	15.6%	1,200	
Quercus phellos	willow oak	7.8%	600	
	Bare Root Shrub S	Species		
Asimina triloba	paw paw	9.5%	400	
Carpinus caroliniana	ironwood	12%	500	
Cercus canadensis	redbud	14%	600	
Cornus amomum	silky dogwood	19%	800	
Lindera benzoin	spicebush	9.5%	400	
Sambucus canadensis	elderberry	19%	800	
Viburnum dentatum	arrowwood	17%	700	
	Native Herbaceous	Species		
Agrostis alba	redtop	10%	NA	
Andropogon gerardii	big bluestem	5%	NA	
Bidens frondosa	devil's beggartick	5%	NA	
Coreopsis lanceolata	lanceleaf tickseed	10%	NA	
Dichanthelium clandestinum	deertongue	15%	NA	
Elymus virginicus	Virginia wild rye	15%	NA	
Juncus effusus	soft rush	5%	NA	
Panicum virgatum	switchgrass	15%	NA	
Polygonum pennsylvanicum	Pennsylvania smartweed	5%	NA	
Schizachyrium scoparium	little bluestem	5%	NA	
Sorghastrum nutans	Indiangrass	5%	NA	
Tripsacum dactyloides	eastern gamagrass	5%	NA	
	Woody Vegetation for	Live Stakes		
Cornus amomum	silky dogwood	30%	2,100	
Salix sericia	silky willow	30%	2,100	
Salix nigra	black willow	10%	700	
Sambucus canadensis	elderberry	30%	2,100	

Table 5. Vegetation Species Planted Across the Restoration Project

3.1.3 Vegetative Observations and Results

Permanent ground cover has been successfully established through the planting of the permanent seed mixture planted at the Site, as observed during Year 4 monitoring of the Site.

Tables A.1 through A.6 in Appendix A presents vegetation metadata, vegetation vigor, vegetation damage and stem count data for the monitoring plots at the end of Year 4 monitoring. Data from Year 4 monitoring for the 13 vegetation plots exhibited a range of 40 to 931 stems per acre. The data show that the Site had an average survivability of 735 stems per acre following Year 4 monitoring. In comparison, following as-built conditions, the Site demonstrated an average survivability of 915 stems per acre.

Trees within each monitoring plot are re-flagged regularly to prevent planted trees from losing their identifying marks due to flag degradation. It is important for trees within the monitoring plots to remain marked to ensure they are all accounted for during the annual stem counts and calculation of tree survivability. Labeled aluminum tags with wire hangers are used on surviving stems to aid in relocation during future counts. The aluminum tags are moved to a single branch instead of the main stem once the tree becomes established. Flags are also used to mark trees because they do not interfere with the growth of the tree.

During Year 4 monitoring, volunteer species including tulip poplar (*Liriodendron tulipfera*) and redbud (*Cercus canadensis*) were noted in plots 8 and 4, respectively. All plots will continue to be assessed during Year 5 monitoring for occurrence of volunteer species.

3.1.4 Vegetative Problem Areas

During Year 4 monitoring, kudzu (*Pueraria montana*) was present on the Site in the vicinity of vegetation plot 13 and in the general vicinity. This concentration of kudzu was previously treated during construction in the spring of 2012, August 2014, October 2014, early August 2015, and late August 2015. The kudzu is located on the upstream portion of Reach M1, downstream of River-Siloam Road. This area was treated by use of the herbicides Glyphosate and Triclopyr. Any remaining kudzu in this area will be treated again during the early growing season 2016.

Also, additional stream enhancement work along M1 and UT1 was completed in September 2015. During this time, the existing kudzu plants and roots were cleared within a large portion of the easement area. Property boundary fencing in the M1 vicinity was installed during the summer of 2015. This fence allows the landowner to graze cattle outside of the fenced conservation easement which will prevent kudzu re-establishment.

Additional bare-root trees will be planted during the winter of 2015 in the riparian buffer areas along M1 and UT1 to increase density and to offset mortality from treating kudzu.

Vegetation Plots 1 through 12 on reach M2 and M3 did not exhibit any invasive or aggressive species occurring on the Site.

3.1.5 Vegetation Photographs

Photographs are used to visually document vegetation plot success. A total of 13 reference stations were established to document tree conditions at each vegetation plot across the Site. Reference photos of tree plots are taken at least once per year. Photos of the tree plots for Year 4 monitoring that show the on-site planted stems are included in Appendix A of this report.

3.2 Stream Assessment

3.2.1 Morphometric Success Criteria

To document the stated success criteria, the following monitoring program was instituted following construction completion on the Site:

Cross-sections: Two permanent cross-sections were installed per 1,000 LF of stream restoration work, with one of the locations being a riffle cross-section and one location being a pool cross-section in each series. A total of 10 permanent cross-sections were established across the Site. Each cross-section was marked on both banks with permanent pins to establish the exact transect used. The permanent cross-section pins are surveyed and located relative to a common benchmark to facilitate easy comparison of year-to-year data. The annual cross-section surveys include points measured at all breaks in slope, including top of bank, bankfull, inner berm, edge of water, and thalweg.

The approved Mitigation Plan requires the following criteria be met to achieve stream restoration success:

- There should be little change in as-built cross-sections
- If changes do take place, they will be evaluated to determine if they represent a movement toward a more unstable condition (e.g., down-cutting or erosion) or a movement toward increased stability (e.g., settling, vegetative changes, deposition along the banks, or decrease in width/depth ratio)
- Cross-sections will be classified using the Rosgen Stream Classification System (Rosgen, 1994), and all monitored cross-sections should fall within the quantitative parameters defined for channels of the design stream type.

Longitudinal Profiles: A complete longitudinal profile was surveyed following construction completion to record as-built conditions and to establish a baseline profile. The profile was conducted for the entire length of each restored channel for all reaches. Measurements included thalweg, water surface, inner berm, bankfull, and top of low bank. Each of these measurements was taken at the head of each feature (e.g., riffle, pool, and glide). In addition, maximum pool depth was recorded. All surveys were tied to a single, permanent benchmark.

The approved Mitigation Plan requires the following criteria be met to achieve stream restoration success:

- A longitudinal profile will be completed annually for the five-year monitoring period
- The profile will be conducted for 3,000 LF of restored Candiff Creek channel
- The longitudinal profiles should show that the bedform features are remaining stable; i.e., they are not aggrading or degrading
- Pools should remain deep, with flat water surface slopes, and the riffles should remain steeper and shallower than the pools
- Bedforms observed should be consistent with those observed for channels of the designed stream type.

3.2.2 Morphometric Results

Year 4 cross-section monitoring data for stream stability was completed during September 2015. The 10 permanent cross-sections along the restored channels (5 located across riffles and 5 located across pools) were re-surveyed to document stream dimension at the end of Monitoring Year 4. Data from each of these cross-sections are presented in Appendix B. Tables B.1 through B.3 in Appendix B present visual stability assessment data, the baseline stream summary and the morphologic and hydraulic monitoring summary.

Cross-sections 1, 4, 6, 8 and 10 are situated across riffles that are located between pools. Monitored cross-sections 1, 4, 6 and 8 are located on the upstream portion of M3 and based on the survey data, these cross-sections demonstrated minor fluctuations in riffle dimension during Year 4 of monitoring and currently remain stable. Additionally, cross-section 10 is located on the downstream portion of M3 and remains stable as well.

Cross-sections 2, 3, 5, 7 and 9 are situated across pools, which are located at the apex of meander bends. Based on the Year 4 survey data, all five pool Cross-sections 2, 3, 5, 7 and 9 have demonstrated minor fluctuations in pool dimensions since as-built conditions. Based on the Year 4 monitoring survey data, all pool cross-sections show the development of point bar features on the inside banks of the meander bends.

According to the Year 4 cross-section data, all cross-sections are currently meeting the successcriteria as stated in the Site Mitigation Plan.

The longitudinal profile for Year 4 monitoring was also completed in September 2015. The Year 4 longitudinal profile monitoring data were compared to the data collected during the asbuilt condition survey completed in April 2012. During Year 4 monitoring, the longitudinal profile survey was completed for Reach M3. A total stream length of 3,150LF was surveyed for M3. The longitudinal profiles for M3 is presented in Appendix B.

Year 4 monitoring data for the M3 longitudinal profile indicate that the riffles in this reach have essentially maintained the same bed elevations since as-built conditions. It was observed in most years including Year 4 that many pools in M3 have continued to increase in depth since as-built conditions. It is noted that increased pool depths were observed throughout most of M3. The deeper pools noted in M3 are benefiting the overall functionality of the Site by providing increased channel stability and also providing an area for energy dissipation while promoting greater habitat diversity. While the pools remain deep, the survey data indicate that the M3 riffles are stable. Additionally, the longitudinal profile for M3 demonstrates that the in-stream structures within the reach are stable and functioning as designed.

According to the Year 4 longitudinal profile data, the restored stream thalweg is stable and currently meeting the success-criteria as stated in the Site Mitigation Plan.

In-stream structures installed within the restored stream included constructed riffles, log vanes, rock j-hooks, log j-hooks, rock cross vanes, root wads and stream ford crossings. Visual observations of these structures throughout Year 4 monitoring indicate that all structures are functioning as designed and holding their post-construction grade. Structures that were installed to develop deeper pools, such as cross vanes and j-hooks, are performing their designed functions. Log vanes placed in meander areas have provided scour in pools to provide cover for aquatic wildlife. J-hooks placed in the lower end of the riffle areas have maintained riffle elevations and have provided downstream scour holes that provides aquatic habitat.

Additionally, bioengineered structures placed on the outside of meander bends have provided bank stability and in-stream cover for fish and other aquatic organisms.

However, two minor pool problem areas were observed during Year 4 monitoring. These two areas are described in Section 3.2.5.

3.2.3 Hydrologic Criteria

One crest gauge was installed on the Site to document bankfull events. The gauge is checked during each site visit and records the stage of the highest out-of-bank flow between site visits. The gauge is located on the left bank on the downstream portion of M3 at station 55+50.

The approved Mitigation Plan requires the following criteria be met to achieve stream restoration success: Two bankfull flow events must be documented within the five-year monitoring period. The two bankfull events must occur in separate years, otherwise, the stream monitoring will continue until two bankfull events have been documented in separate years.

3.2.4 Hydrologic Monitoring Results

According to the on-site crest gauge, the Site experienced at least two significant bankfull flow events during Year 4 monitoring. The largest on-site bankfull flow event documented at the M3 crest gauge occurred on April 20, 2015. It is estimated that the height of highest flow at the M3 crest gauge observed in Year 4 was approximately 2.85 feet above bankfull stage. A photograph depicting a large stump that washed up along M3 on October 4, 2015 is included in Appendix B.

Since As-built conditions, seven documented bankfull events have been recorded as shown in Table 6. The approved Mitigation Plan requires that two bankfull flow events must be documented within the five-year monitoring period.

Each of the four years of monitoring has documented at least one bankfull event within the restored channel. As such, the hydrologic success criteria for the Site has been met.

Crest gauge readings are presented in Table 6 and photos of the crest gauges and out-of-bank evidence are presented in Appendix B.

Table 0. Verification	Table 6. Verification of Banklun Events						
Candiff Creek Restoration Project: DMS Project No. 92767							
Date of Data Collection	Estimated Occurrence of Bankfull Event	Method of Data Collection	M3 Crest (feet)				
5/22/2012	4/2012 - 5/2012 storms	Crest Gauge	1.60				
2/7/2013	1/18/2013	Crest Gauge	2.49				
9/23/2013	7/5/2013	Crest Gauge	1.21				
4/9/2014	1/11/2014	Crest Gauge	0.82				
7/23/2014	4/29/2014	Crest Gauge	0.23				
4/30/2015	4/20/2015	Crest Gauge	2.85				
10/19/2015	10/4/2015	Crest Gauge	1.60				

 Table 6. Verification of Bankfull Events

3.2.5 Stream Problem Areas

Additional stream enhancement work along M1 and UT1 was completed in September 2015. Bankfull benches were excavated and vertical stream banks were sloped to stable angles. In addition, vane structures and toe wood were installed along meander bends to protect the stream banks, provide additional habitat, and to provide long-term stream bank stabilization. No additional credit is being requested as a result of this work. During this time, the existing kudzu plants and roots were cleared within a large portion of the easement area. Per the permit conditions for the enhancement work, monitoring along M1 and UT1 will be conducted for a minimum of one additional year beyond the monitoring required in the mitigation plan. This monitoring will include visual assessments conducted twice per year and the installation and annual monitoring of two bank pin arrays installed in the outside of meander bends.

Two pools located at stations 46+50 and 55+50 have exhibited areas of erosion during Year 4 monitoring. The erosional areas observed are occurring on the outer bend below the root wads and are approximately 10 feet or less in length. These two minor problem areas make up approximately 0.2% of the total as-built stream length of 5,095 feet. Photos of these two areas are included in the Appendix. These areas are isolated and do not suggest a trend towards long-term instability.

3.2.6 Stream Photographs

Photographs are used to document restoration success visually. A total of 59 reference stations were installed and photographed after construction. Photographs of these reference stations will be collected for at least five years following construction. Reference photos are taken at least twice per year, and are taken in enough locations to document the condition of the restored system. Permanent markers were established to ensure that the same locations (and view directions) on the Site are documented in each monitoring period.

The stream systems are photographed longitudinally, beginning at the downstream portion of the restoration reaches, and moving upstream to the beginning of the reaches. Photographs are taken looking upstream at designated locations. Reference photo locations are marked and described for future reference. Points are spaced sufficiently close to provide an overall view of the reach. The angle of the photograph depends on which direction provides the best view and is noted and will be continued for future photos. When modifications to photo position and/or direction are made due to obstructions or other reasons, the modified photo position and/or direction is noted, along with any landmarks. The modified position is used in all future photographs of that site.

Additional photographs are taken to document any observed evidence of flooding patterns such as debris, wrack lines, water marks, channel features, etc.

Also, both stream banks are photographed at all permanent cross-section photo stations. For each stream bank photo, the photo view line follows a survey tape placed across the channel, perpendicular to flow (representing the cross-section line). The photograph is framed so that the survey tape is centered in the photo (appears as a vertical line at the center of the photograph), keeping the channel water surface line horizontal and near the lower edge of the frame. In each cross-section photo showing the left bank, flow is moving to the right. Conversely, in each cross-section photo showing the right bank, flowing is moving to the left.

A photo log of the restored channel is presented in the attached CD of this report. Photos for each of the 10 permanent cross-sections are included in Appendix B.

Photographs of the restored channel were taken in October 2015 to document the evolution of the stream geometry. Herbaceous vegetation and shrubs were dense along the banks of M2 and M3, making the photography of some of the stream channel areas difficult. Additionally, photographs of the enhancement work performed along M1 and UT1 are provided in Appendix B.

3.2.7 Stream Stability Assessment

Table B.1 provides a summary of the results obtained from the visual inspection of in-stream structures performed during Year 4 monitoring. The percentages noted are a general, overall field evaluation of the how the features were performing at the time of the photo point survey. According to the visual stability assessment following Year 4 monitoring, and after a visual evaluation throughout 2015, it was determined that all features at the Site along M2, M3, and UT2 are currently performing as designed. With the recent enhancement activities, kudzu treatment, and planned re-planting, the features along M1 and UT1 will meet performance standards.

3.2.8 Quantitative Measures Summary Tables

The quantitative pre-construction, reference reach, and design data used to determine restoration approach, as well as the as-built baseline data used during the project's post construction monitoring period are summarized in Appendix B.

4.0 OVERALL CONCLUSIONS AND RECOMMENDATIONS

Stream Monitoring - The total length of stream channel restored, enhanced and/or preserved on the Site was 7,038 LF. The project involved the restoration of 4,081 linear feet (LF) of stream along M3. Additionally 1,757 of stream Enhancement (265 LF of Enhancement I along M2 and 1,492 LF of Enhancement II along M1, UT1 and UT2) and 1,200 LF of stream preservation along UT1 and UT2. This entire length was inspected during Year 4 monitoring to assess stream performance. Excluding M1 and UT1 which have been discussed above with issues that are actively being addressed, the Year 4 monitoring did not reveal any significant problem areas within the boundaries of the Site.

Cross-section monitoring data for stream stability were collected during Year 4 monitoring. Additionally, a longitudinal profile survey was also completed during Year 4 monitoring for approximately 3,150 LF of stream on the Site. The longitudinal profile was completed for Reach M3 only. Year 4 monitoring data for the M3 longitudinal profile show that the riffles in this reach have maintained relatively the same bed elevations since as-built conditions. The longitudinal profile demonstrates that the in-stream structures within M3 are stable and functioning as designed. The Year 4 cross-sectional data also indicate that Reach M3 is stable and functioning as designed.

According to the on-site crest gauge, the Site experienced at least two significant bankfull flow events during Year 4 monitoring. The largest on-site bankfull flow event documented at the M3 crest gauge occurred on April 20, 2015. It is estimated that the height of highest flow at the M3 crest gauge observed in Year 4 was approximately 2.85 feet above bankfull stage.

Since As-built conditions, seven documented bankfull events have been recorded as shown in Table 6. The approved Mitigation Plan requires that two bankfull flow events must be documented within the five-year monitoring period.

Given that each of the four years of monitoring has documented a bankfull event within the restored channel, it is noted that the hydrologic success criteria for the Site has been met.

Two pools located at stations 46+50 and 55+50 have exhibited areas of erosion during Year 4 monitoring. The erosional areas observed are occurring on the outer bend below the root wads and are approximately 10 feet or less in length. These areas are isolated and do not suggest a trend towards long-term instability.

Additional stream enhancement work along M1 and UT1 was completed in September 2015. Bankfull benches were excavated and vertical stream banks were sloped to stable angles. In addition, vane structures and toe wood were installed along meander bends to protect the stream banks, provide additional habitat, and to provide long-term stream bank stabilization. No additional credit is being requested as a result of this work.

Vegetation Monitoring - Data from Year 4 monitoring for the 13 vegetation plots exhibited a range of 40 to 931 stems per acre. The data showed that the Site had an average of survivability of 735 stems per acre.

During Year 4 monitoring, kudzu (*Pueraria montana*) was present on the Site in the vicinity of vegetation plot 13 and in the general vicinity. This concentration of kudzu was previously treated during construction and remnants are still present within the easement. The kudzu is located on the upstream portion of Reach M1, downstream of River-Siloam Road. This area was treated once in early August 2015 and once in late August 2015 by use of the herbicides Glyphosate and

Triclopyr. Any remaining kudzu in this area will be treated again during the early growing season 2016.

Also, additional stream enhancement work along M1 and UT1 was completed in September 2015. Bankfull benches were excavated and vertical stream banks were sloped to stable angles. In addition, vane structures and toe wood were installed along meander bends to protect the stream banks, provide additional habitat, and to provide long-term stream bank stabilization. No additional credit is being requested as a result of this work. During this time, the existing kudzu plants and roots were cleared within a large portion of the easement area. Vegetation Plots 1 through 12 on reach M2 and M3 did not exhibit any invasive or aggressive species occurring on the Site.

Property boundary fencing in the M1 vicinity was installed during the summer of 2015. This fence allows the landowner to graze cattle outside of the fenced conservation easement which will prevent kudzu re-establishment.

Additional bare-root trees will be planted during the winter of 2015 in the riparian buffer areas along M1 and UT1 to increase density and to offset mortality from treating kudzu.

5.0 WILDLIFE OBSERVATIONS

Observations of deer and raccoon tracks are common at the Site. During Year 4 monitoring, small animals such frogs, rodents, snakes, and fish were periodically observed. Various songbirds and birds of prey were observed on the Site throughout Year 4 monitoring.

6.0 **REFERENCES**

Rosgen, D. L. 1994. A Classification of Natural Rivers. Catena 22: 169-199.

- Cowardin, L. M., V. Carter, F. C. Golet, E. T. LaRoe. 1979. Classification of wetlands and habitats of the United States. U.S. Department of the Interior, Fish and Wildlife Service, Washington, D.C
- USDA, Natural Resource Conservation Service, *Soil Survey of Surry County*, North Carolina, 2007.

FIGURES

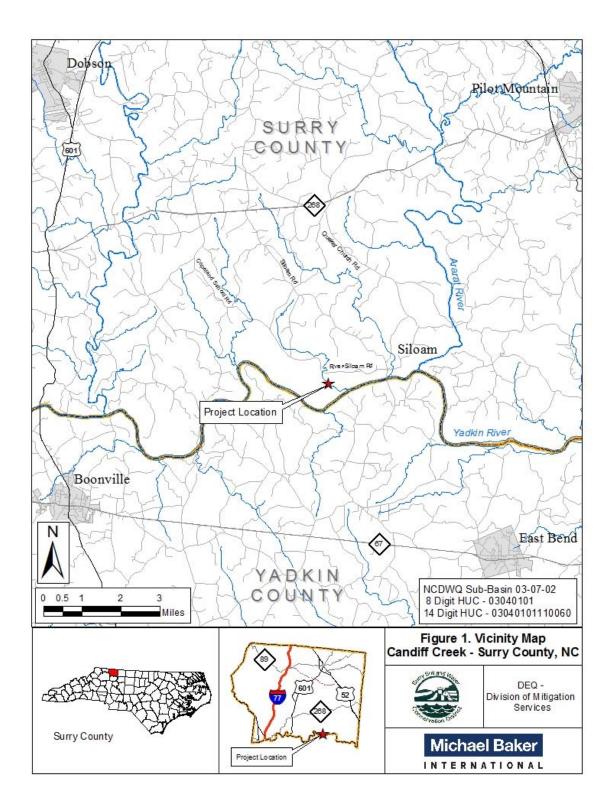
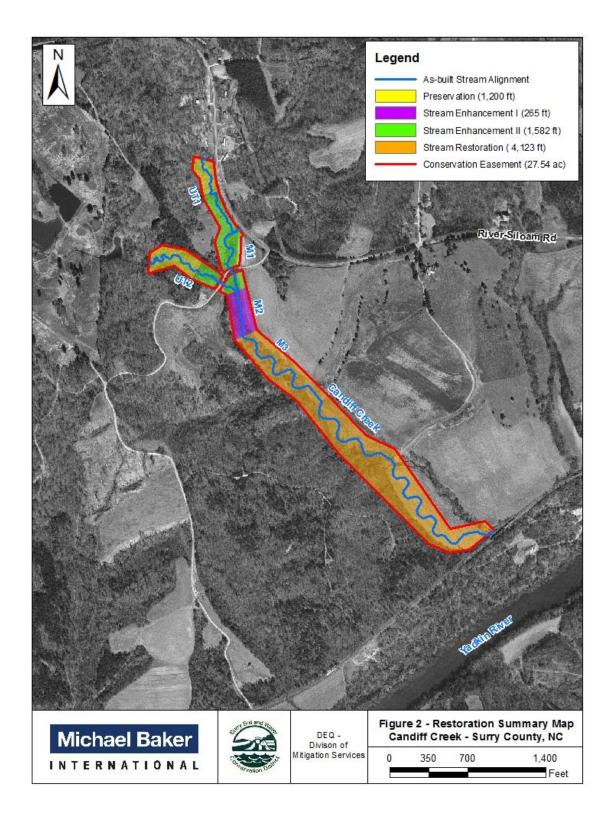
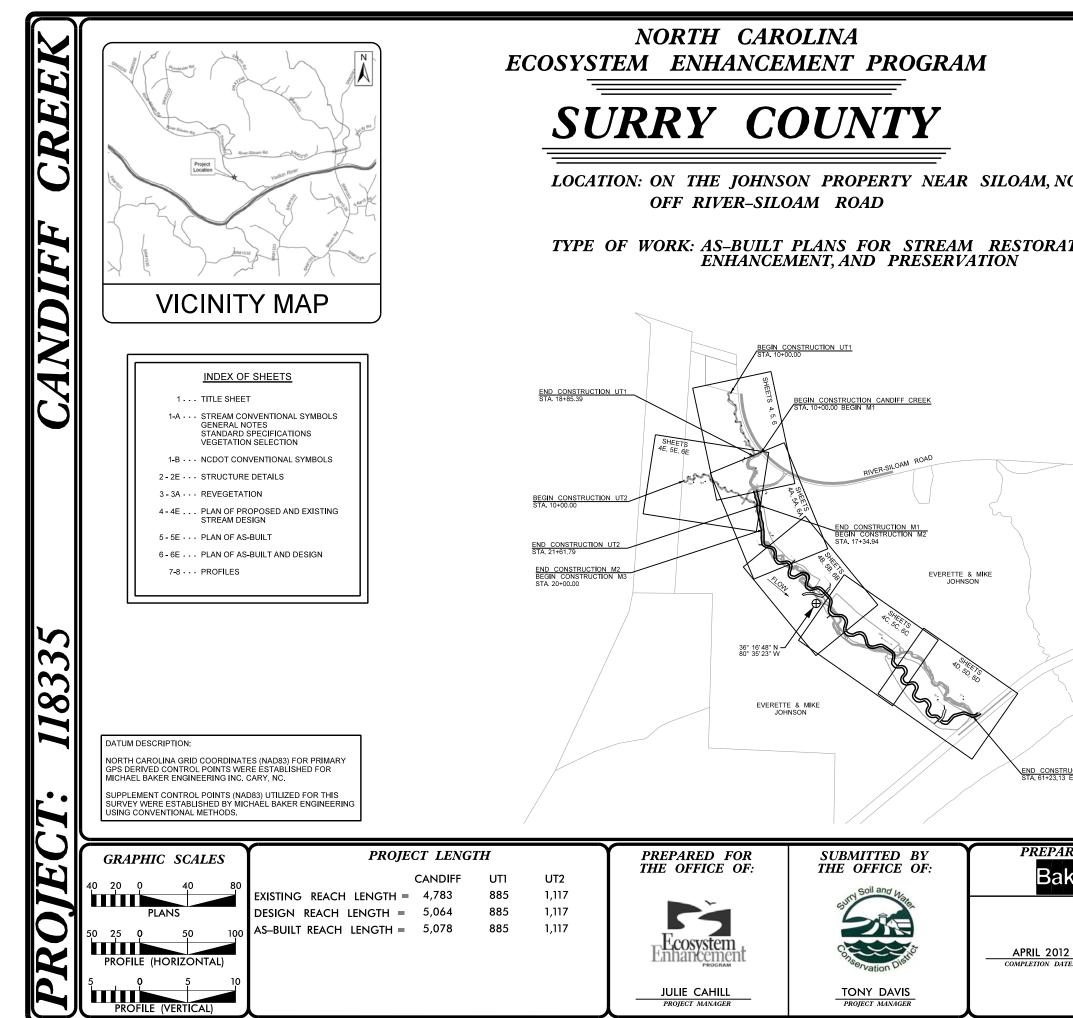
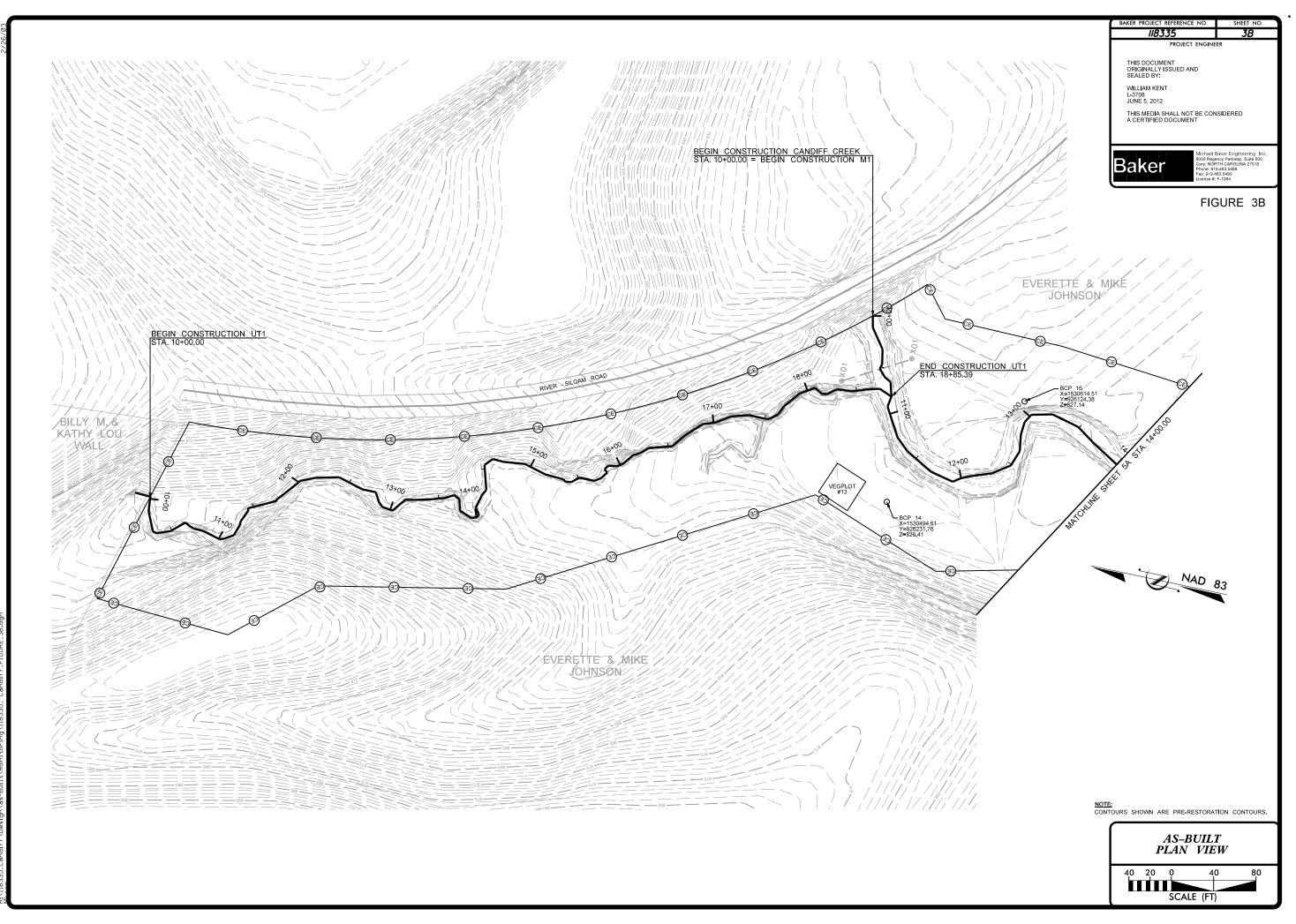
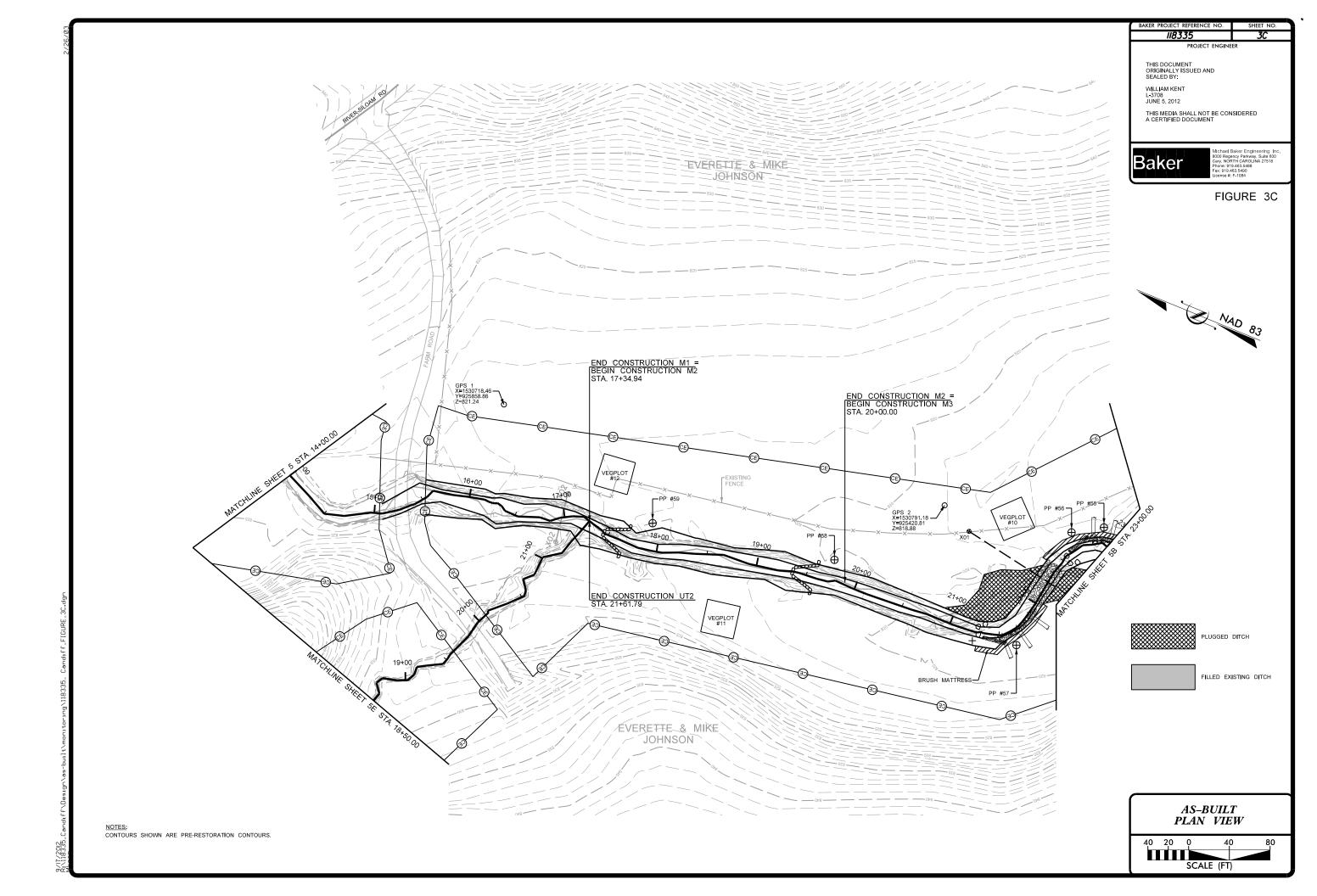
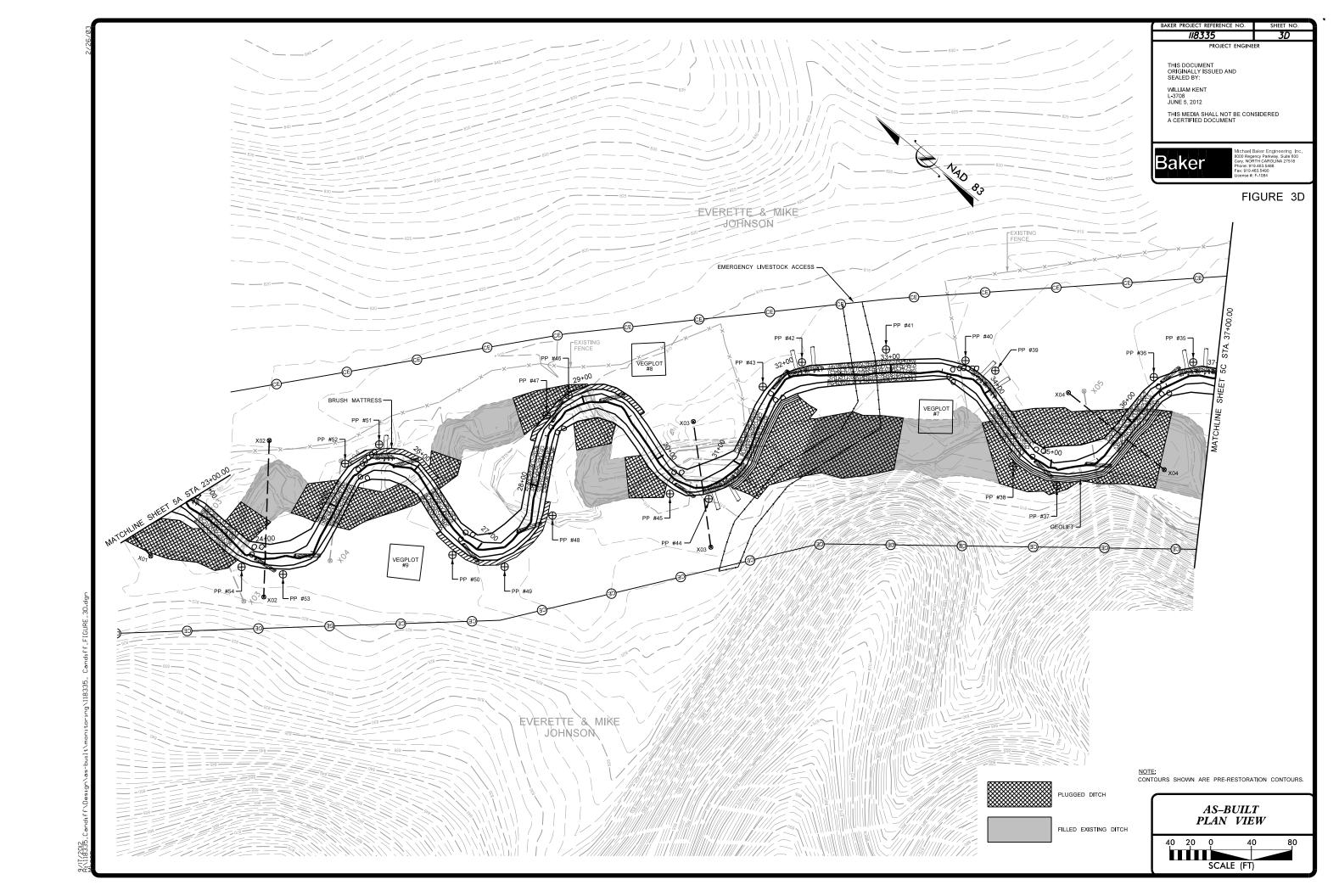
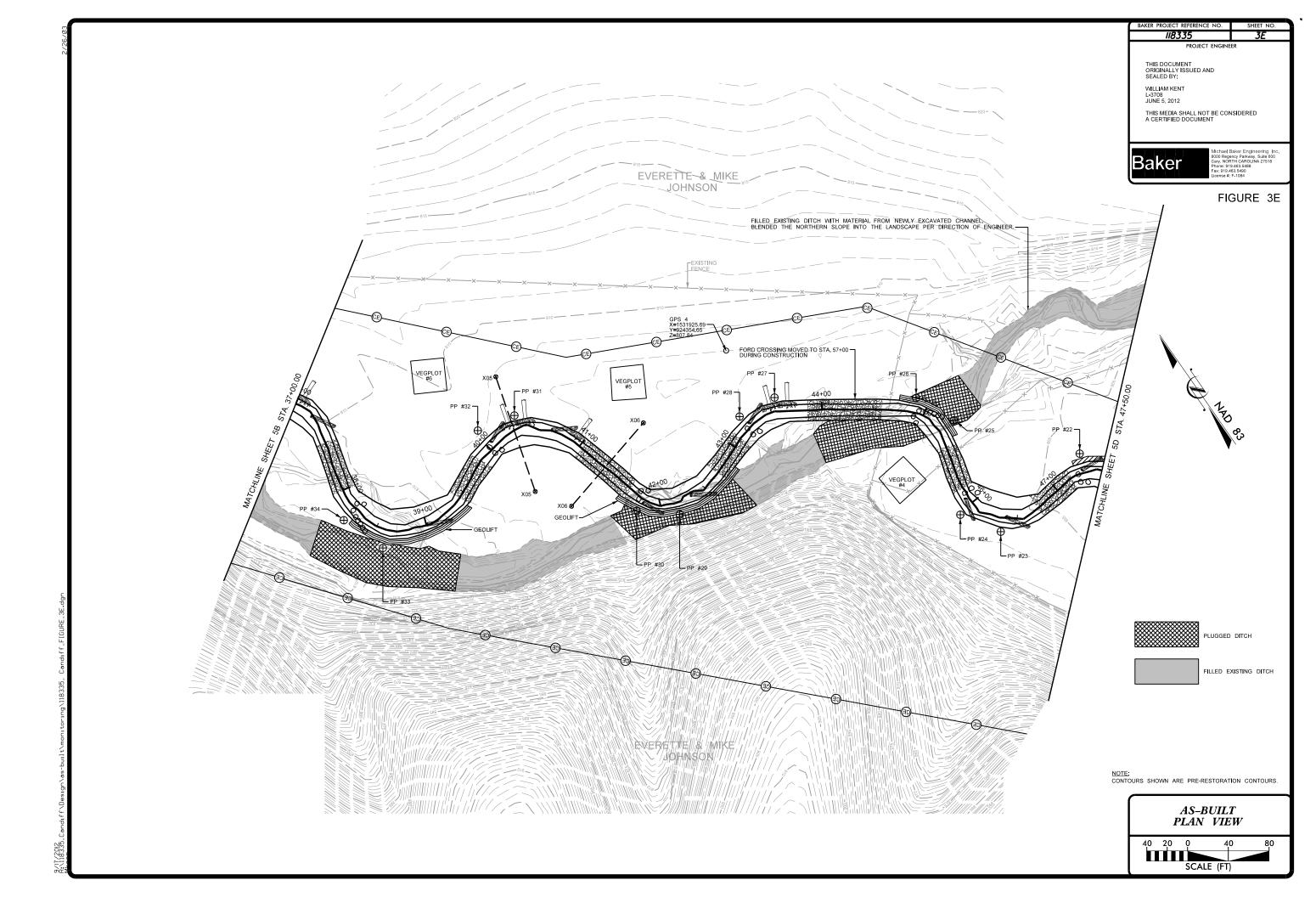


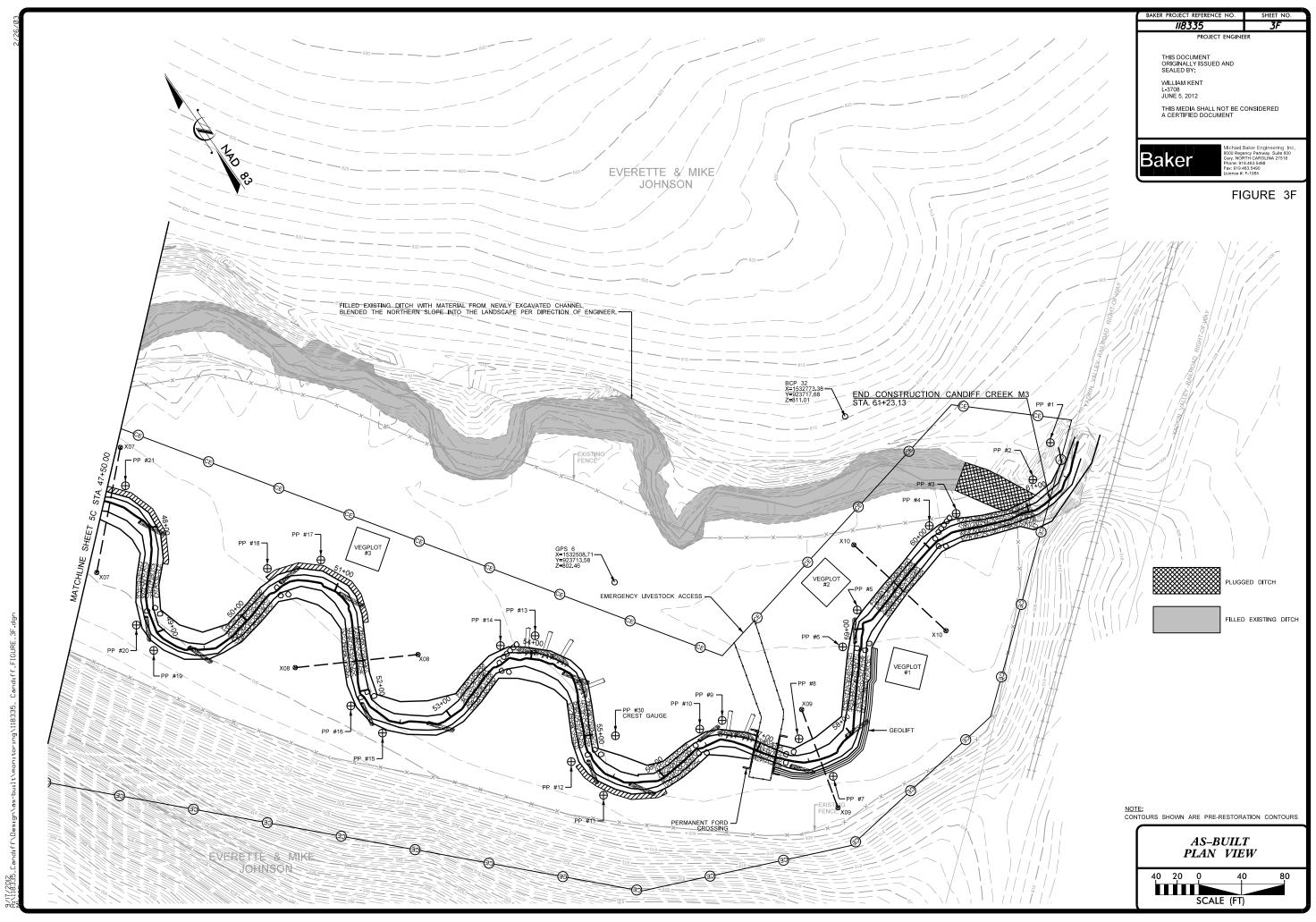
Figure 1. Vicinity Map of Candiff Creek Restoration Project.

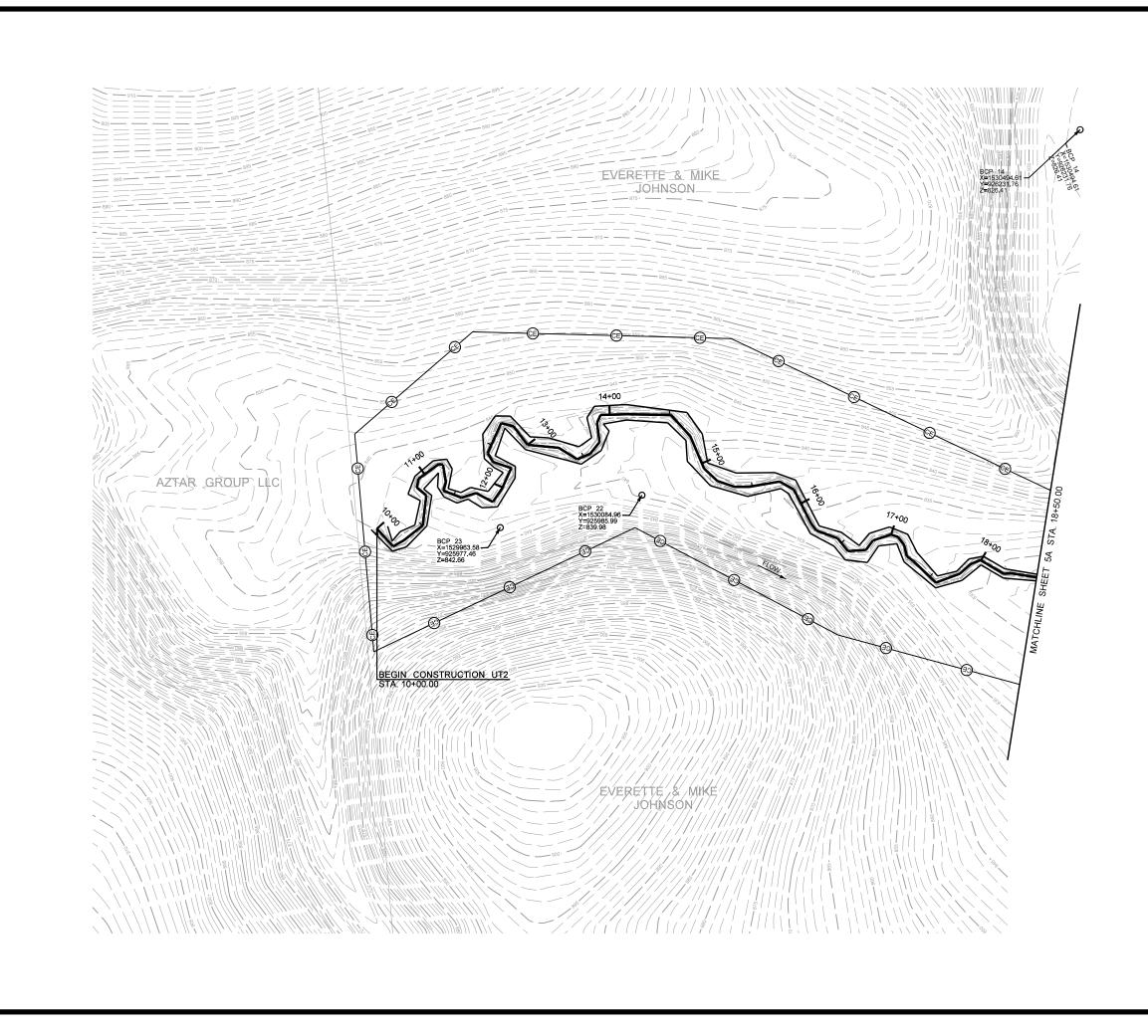





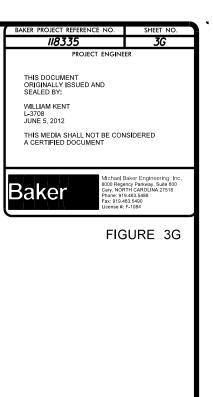

Figure 2. Restoration Summary Map of Candiff Creek Restoration Project.



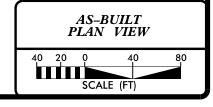
		STATE	BAKER PRO	JECT REFERENCE NO.	SHEET NO.	TOTAL SHEETS
		NC	1	L 8335	1	7
С С						
TION,						
)					
	d l					
	Y					
	NAD 83					
	NAL					
	EV RAILROAD	\				
VADKIN	VALLEY RAILROAD	$\sum_{i=1}^{n}$				
/						
	YADKIN RIVER					
\sim	YADKIN RIVL					
FLOW						
,						
RUCTION CAN END M3	DIFF CREEK					
				FIGU	RF '	
RED I	N THE OFF	ICE OF:		PROJECT E	NGINI	EER
ker	Michael Baker Engineerin 8000 Regency Parkway, Sult Cary, NORTH CAROLINA 27 Phone: 919.463.5488	ng Inc. e 600 518		.		
NCI	Phone: 919.463.5488 Fax: 919.463.5490 License #: F-1084					
				THIS DOCUMENT ORIGINALLY ISSUED ANI	D	
	WILLIAM SCO	отт ним	Г III <i>,</i> РЕ	SEALED BY: WILLIAM KENT		
2	PROJEC	CT ENGINEER		L-3708 JUNE 5, 2012	PE CONCISE	
TE:	JOSHUA	WHITE. PG	, PE	THIS MEDIA SHALL NOT A CERTIFIED DOCUMEN	ве CONSIDEF T	KED
	PROJECT MANAGE					
				SIGNATURE:		<u>P.E.</u>
				STOLUTIONE.		

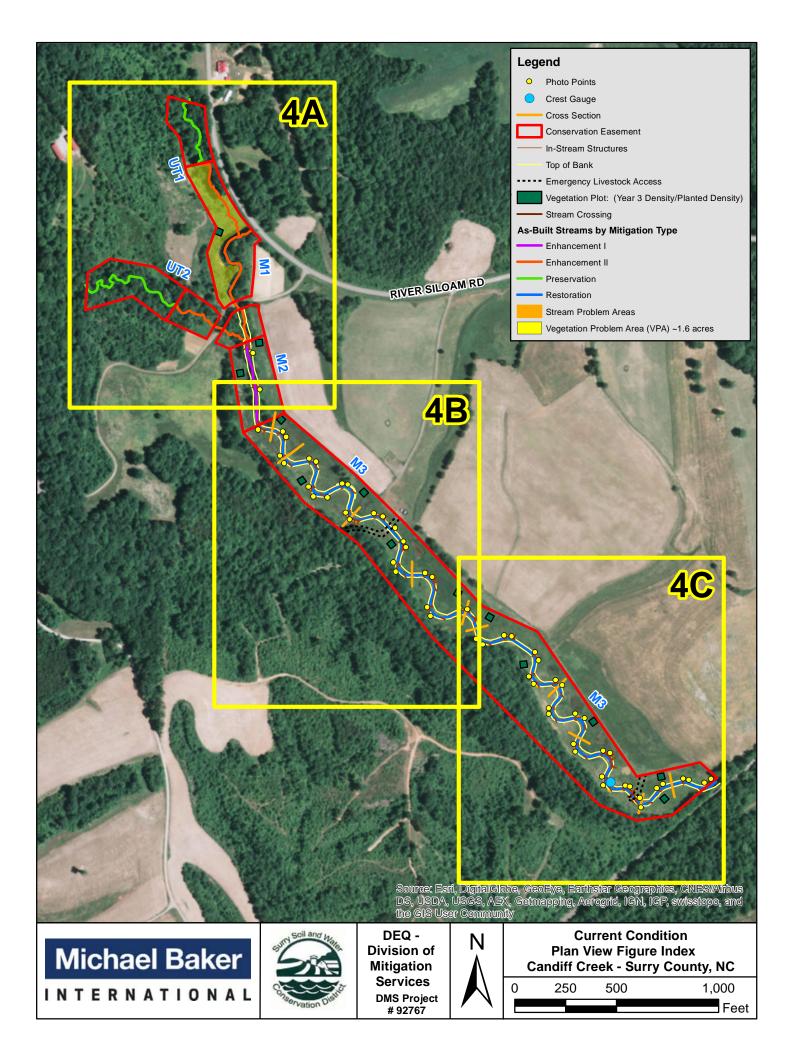


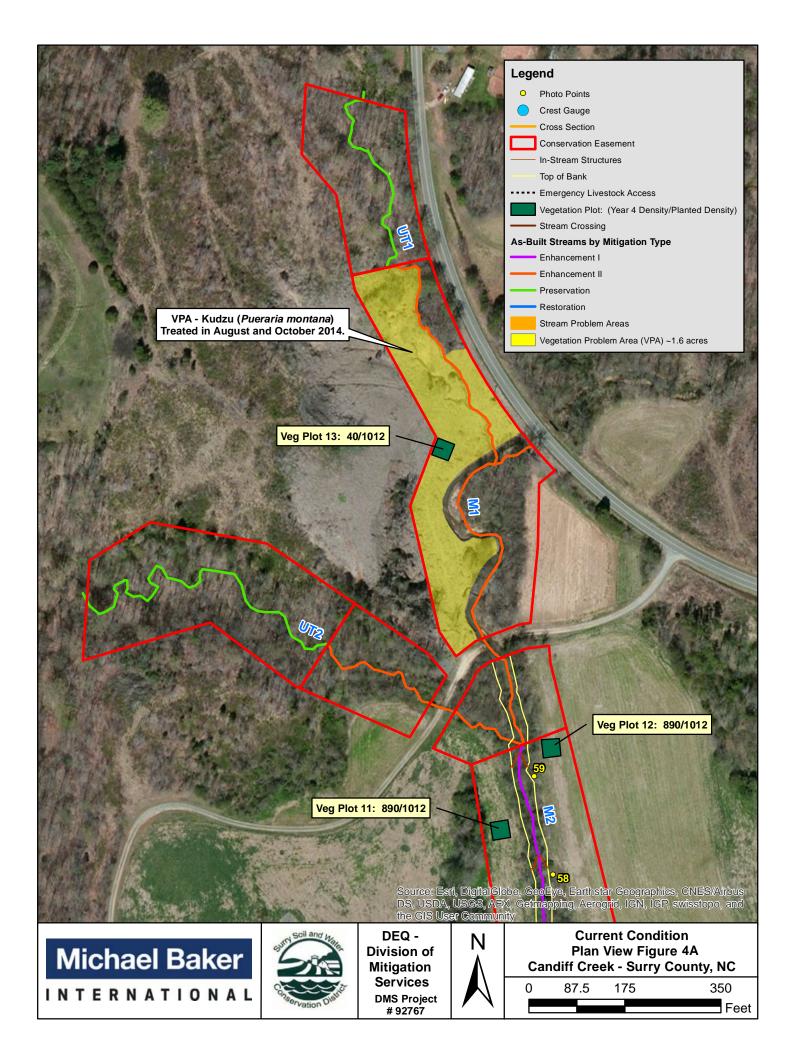


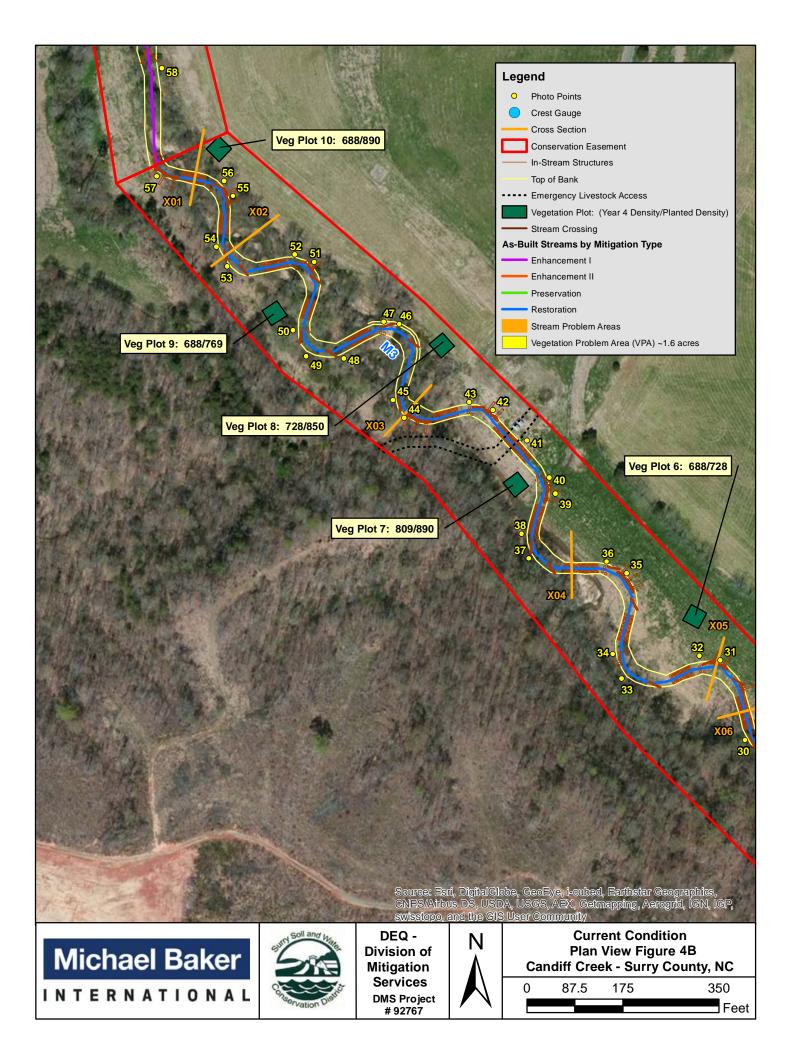


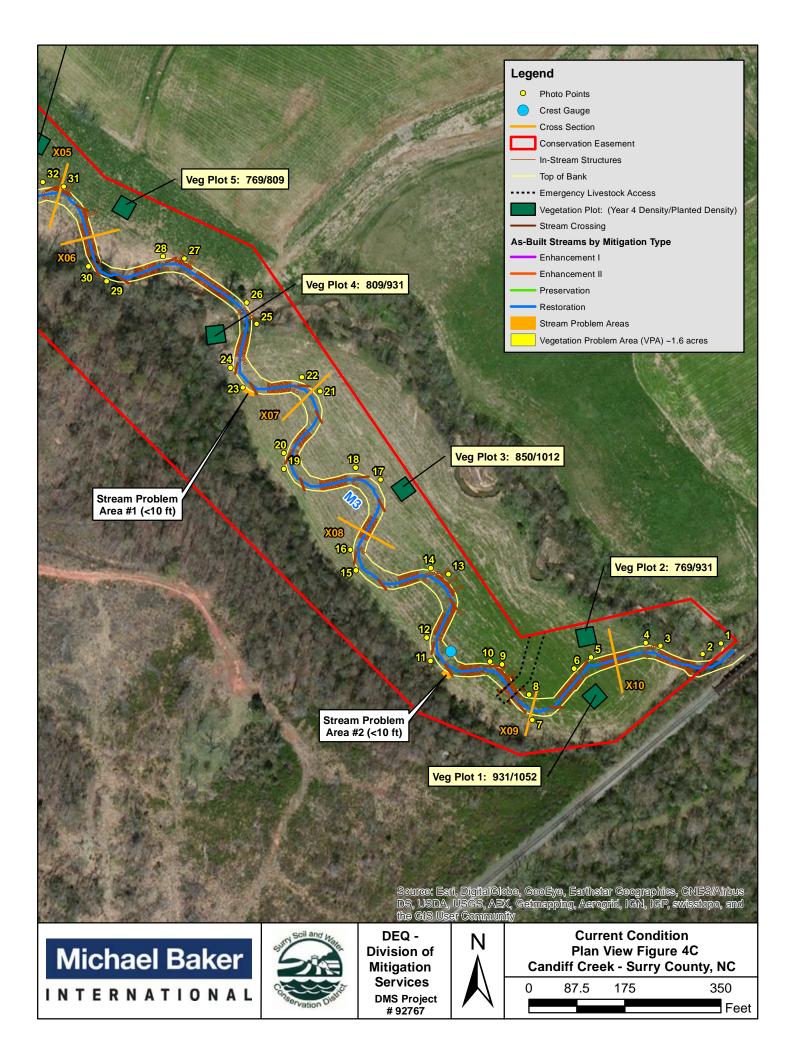
.




2002 8335 Candiff\Design\as-built\municipition118335 Candiff FIGURE 3G dor






NOTE: CONTOURS SHOWN ARE PRE-RESTORATION CONTOURS.

APPENDIX A

VEGETATION DATA

VEGETATION TABLES

Table A.1. Vegetation Metadata

Candiff Creek Restoration Proje	ct: Project No. 92767
Report Prepared By	Dwayne Huneycutt
Date Prepared	10/20/2015 16:01
database name	MichaelBaker-2014-B-Candiff_UTMillSwamp.mdb
database location	L:\Monitoring\Veg Plot Info\CVS Data Tool\Candiff_UT to Mill Swamp
computer name	CARYLDHUNEYCUTT
file size	54562816
DESCRIPTION OF WORKSHEETS IN TH	IIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	92767
project Name	Candiff
Description	Stream and Buffer Restoration
River Basin	Yadkin-Pee Dee
length(ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	13

Table A.2. Vegetation Vigor by Species

Candiff Cr	eek Restoration Project	: Project No. 92767							
	Species	Common Name	4	3	2	1	0	Missing	Unknown
	Asimina triloba	pawpaw	1						
	Betula nigra	river birch	44	6	3		3		
	Cornus amomum	silky dogwood		7	12	6			
	Diospyros virginiana	common persimmon	16	6	4	1			
	Fraxinus pennsylvanica	green ash	3	2	1	2	1		
	Quercus michauxii	swamp chestnut oak	7	12	9	1			
	Quercus phellos	willow oak	3	5	2				
	Sambucus canadensis	Common Elderberry			3				
	Viburnum dentatum	southern arrowwood	1						
	Carpinus caroliniana	American hornbeam	4	3	1				
	Cercis canadensis	eastern redbud		4	6		2		
	Quercus rubra	northern red oak			1		2		
	Liriodendron tulipifera	tuliptree	3	3					
	Platanus occidentalis	American sycamore	41	9	4		3		
TOTAL	14	14	123	57	46	10	11		

 Table A.3. Vegetation Damage by Species

Candiff (Creek Restoration Project	t: Project No. 92767					
	Species	Common North	Common of	No Dan See Galegori	Vine St.	uojiense.	
	Asimina triloba	pawpaw	0	1			
	Betula nigra	river birch	0	56			
	Carpinus caroliniana	American hornbeam	0	8			
	Cercis canadensis	eastern redbud	0	12			
	Cornus amomum	silky dogwood	0	25			
	Diospyros virginiana	common persimmon	0	27			
	Fraxinus pennsylvanica	green ash	1	8	1		
	Liriodendron tulipifera	tuliptree	0	6			
	Platanus occidentalis	American sycamore	2	55	2		
	Quercus michauxii	swamp chestnut oak	0	29			
	Quercus phellos	willow oak	0	10			
	Quercus rubra	northern red oak	3		3		
	Sambucus canadensis	Common Elderberry	0	3			
	Viburnum dentatum	southern arrowwood	0	1			
TOTAL	14	14	6	241	6		

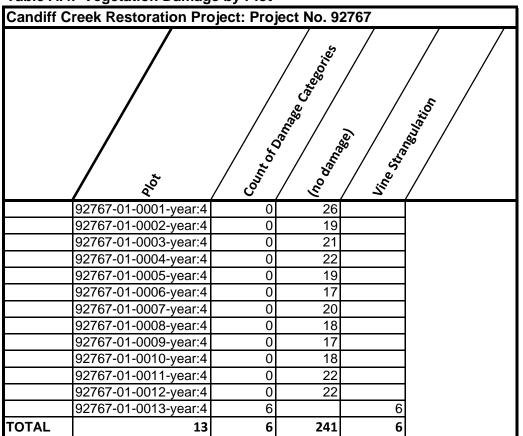


 Table A.4.
 Vegetation Damage by Plot

Candiff	Cree	k Restoration Project: P	roject No. 9276	o <i>r</i>																	, -
	Com.	Deces	Soltoe	Componience	lotal	* of pi	Avera.	Plot 9.	Plot 0, 0, 0001	Dlot 9.2	Plot. 9.	Plot 9.1	Plot 93. 0005	Plot 9.	Plot 93	Plot 93	Plot 9, 0009	Plot 9, 01,0010	Plot 93	Plot 0, 0, 001, 001,	£100.10(1)
		Asimina triloba	Shrub Tree	pawpaw	1	1	1											1			
		Betula nigra	Tree	river birch	53	10	5.3	10	3	5	4	5		3	6	10	6		1		
		Carpinus caroliniana	Shrub Tree	American hornbeam	8	4	2	2				1					3		2		
		Cercis canadensis	Shrub Tree	eastern redbud	10	4	2.5				6		2		1		1				
		Cornus amomum	Shrub	silky dogwood	25	6	4.17	1	4	6			4	7					3		
		Diospyros virginiana	Tree	common persimmon	27	9	3			1	2	3		3	5	1	1	7	4		
		Fraxinus pennsylvanica	Tree	green ash	8	7	1.14		1	1		1		2		1		1	1		
		Liriodendron tulipifera	Tree	tuliptree	6	2	3								1				5		
		Platanus occidentalis	Tree	American sycamore	54	10	5.4	9	1	5	5	7	6	1		4		10	6		
		Quercus michauxii	Tree	swamp chestnut oak	29	9	3.22		3	2	3	2	3	3	5		5	3			
		Quercus phellos	Tree	willow oak	10	4	2.5		7	1			1			1					
		Quercus rubra	Tree	northern red oak	1	1	1													1	
		Sambucus canadensis	Shrub Tree	Common Elderberry	3	3	1	1					1				1				
		Viburnum dentatum	Shrub Tree	southern arrowwood	1	1	1							1							
TOTAL	0	14	4 14	14	236	14		23	19	21	20	19	17	20	18	17	17	22	22	1	

Table A.6.	Plot Species	and Densities
------------	--------------	---------------

Candiff Creek Restoration Project:	DMS Pr	oject N	lo. 9276	67											
Tree Species							Plots							Year 4	
	1	2	3	4	5	6	7	8	9	10	11	12	13	Totals	
Betula nigra	10	3	5	4	5		3	6	10	6		1		53	
Diospyros virginiana			1	2	3		3	5	1	1	7	4		27	
Fraxinus Pennsylvanica		1	1		1		2		1		1	1		8	
Liriodendron tulipifera								1				5		6	
Platanus occidentalis	9	1	5	5	7	6	1		4		10	6		54	
Quercus michauxii		3	2	3	2	3	3	5		5	3			29	
Quercus phellos		7	1			1			1					10	
Quercus rubra													1	1	Versile Assesses
Shrub Species															Yearly Average Stems/acre
Asimina triloba											1			1	
Carpinus caroliniana	2				1					3		2		8	
Cercis canadensis				6		2		1		1				10	
Cornus amomum	1	4	6			4	7					3		25	
Lindera benzoin														0	
Sambucus canadensis	1					1				1				3	
Viburnum dentatum							1							1	
Number of volunteer stems/plot	0	0	0	7	0	0	0	6	0	0	0	0	0	13	
Number of planted stems/plot	23	19	21	20	19	17	20	18	17	17	22	22	1	236	
Total Stems/acre Year 4	931	769	850	809	769	688	809	728	688	688	890	890	40		735
Total Stems/acre Year 3	1052	769	850	890	769	648	809	728	688	728	890	890	243		766
Total Stems/acre Year 2	1052	809	850	890	769	648	890	728	728	769	931	890	688	819	
Total Stems/acre Year 1	1052	971	850	931	850	728	890	769	769	809	971	931	890	878	
Total Stems/acre Initial	1052	931	1012	931	809	728	890	850	769	890	1012	1012	1012	915	

VEGETATION PHOTOS

Vegetation Plot 1

Vegetation Plot 2

Vegetation Plot 3

Vegetation Plot 4

Vegetation Plot 5

Vegetation Plot 6

Vegetation Plot 7

Vegetation Plot 8

Vegetation Plot 9

Vegetation Plot 10

Vegetation Plot 11

Vegetation Plot 12

Vegetation Plot 13

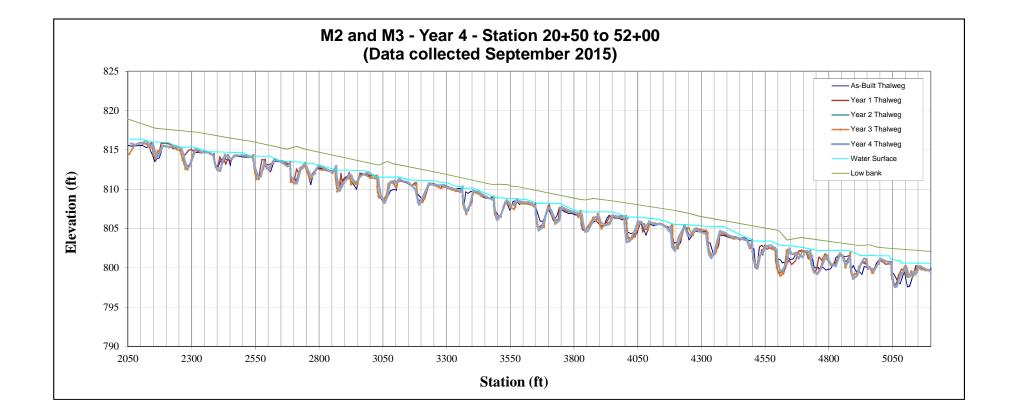
APPENDIX B

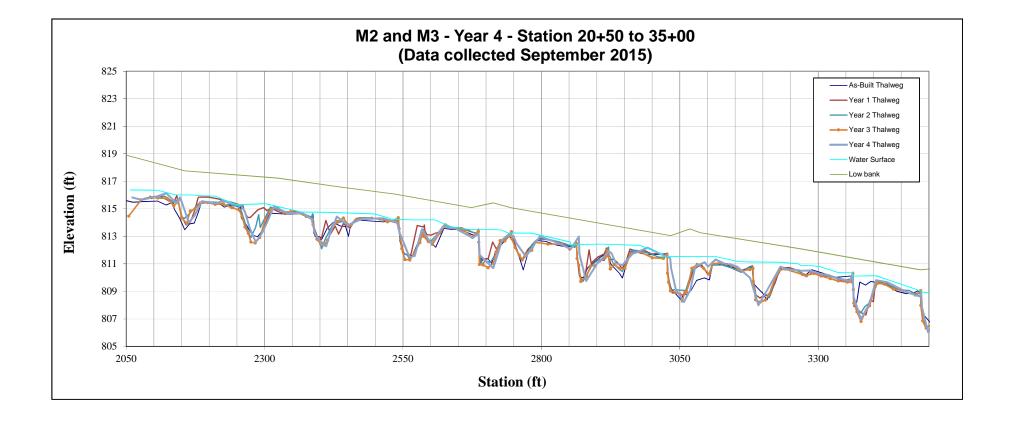
GEOMORPHIC DATA

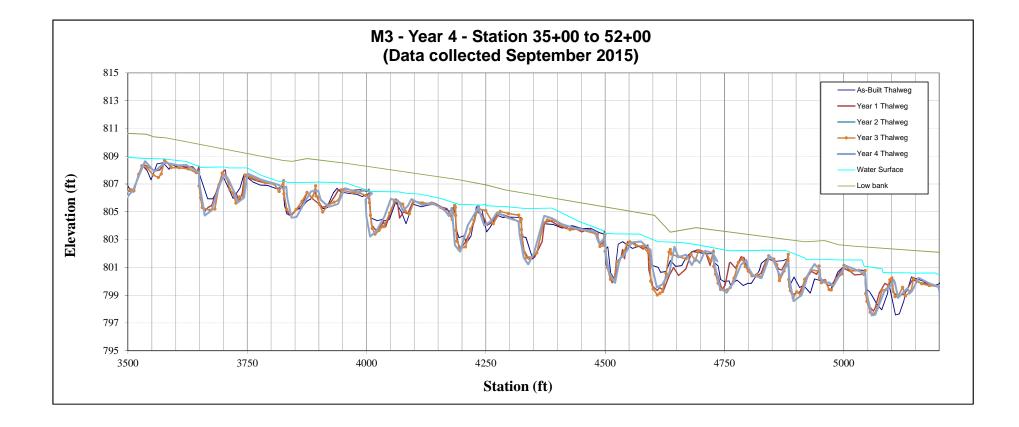
STREAM TABLES

	Performance Percentage														
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05									
A. Riffles	100%	100%	100%	100%	100%										
B. Pools	100%	96%	96%	96%	99%										
C. Thalweg	100%	100%	100%	100%	100%										
D. Meanders	100%	100%	100%	100%	100%										
E. Bed General	100%	100%	100%	100%	100%										
F. Bank Condition	100%	100%	100%	100%	99%										
G. Wads	100%	100%	100%	100%	99%										

 Table B.1. Categorical Stream Feature Visual Stability Assessment


Condiff Creek Destaution Dreiset, DMC Dreiset No.	00767																
Candiff Creek Restoration Project: DMS Project No.	92/6/					Candiff	Creek - M2										
Parameter	USGS	Gauge	Reg	jional Curve	Interval		Existing Co		Ref	ference Rea	ch(es) Data		Design			As-built	
Dimension - Riffle			LL	UL	Eq.	Min	Mean	Max	Min	Mean	Max	Min	Med	Max	Min	Mean	Max
BF Width (ft)							19.8						19.8				
Floodprone Width (ft)							23.8					27.7		30.0			
BF Mean Depth (ft)							1.42						1.42				
BF Max Depth (ft) BF Cross-sectional Area (ft ²)							1.85										
BF Cross-sectional Area (ft²) Width/Depth Ratio							28.2 13.9		11		14		29.0 13.9				
Entrenchment Ratio							1.2					1.4		1.5			
Bank Height Ratio							2.6		1		1.1	1.4		1.1			
BF Velocity (fps)							3.7		3.5		5		3.6				
Pattern																	
Channel Beltwidth (ft)																	
Radius of Curvature (ft)																	
Meander Wavelength (ft)																	
Profile Meander Width Ratio																	
Riffle Length (ft)																	
Riffe Slope (ft/ft)												0.005		0.0081			
Pool Length (ft)																	
Pool Spacing (ft)												29.7		99			
Substrate and Transport Parameters		1				1						1			1		
d16 / d35 / d50 / d84 / d95						8 3/3	4.4/36.7/82.	0/1193				8 3/2/	.4/36.7/82.0	1/119 3			
Reach Shear Stress (competency) lb/f ²							0.35					0.3/24	0.36				
Stream Power (transport capacity) W/m ²							21.7						21.7				
Additional Reach Parameters																	
Channel length (ft)							265						265			265	
Drainage Area (SM)							2.53						2.53			2.53	
Rosgen Classification							F4/1						B4c/1			B4c/1	
BF Discharge (cfs)							105						105				
Sinuosity BF slope (ft/ft)							1.00 0.0045		1.2		1.4		1.00 0.0045			1.00 0.0045	
							0.0045						0.0045			0.0045	
						Candiff	Creek - M3										
_																	
Parameter	USGS	Gauge	Reg	ional Curve	Interval	Pre	Existina Co	ndition	Ref	ference Rea	ch(es) Data		Desian			As-built	
Parameter Dimension - Riffle	USGS	Gauge	-	ional Curve			Existing Co			ference Rea		Min	Design Mean	Max	Min	As-built Mean	Max
Dimension - Riffle	USGS	Gauge	Reg	ional Curve	Interval Eq.	Min	Existing Co Mean	Max	Ref Min	ference Rea Mean	ch(es) Data Max	Min	Mean	Max	Min 19.8	Mean	Max 21.6
Dimension - Riffle BF Width (ft)			LL		Eq.	Min 20.7	-	Max 32.2					-		19.8	Mean 25.6	21.6
Dimension - Riffle BF Width (ft) Floodprone Width (ft)			LL		Eq.	Min	-	Max					Mean 20.4			Mean	
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Mean Depth (ft) BF Max Depth (ft)			LL 	UL 	Eq. 	Min 20.7 35.5 0.9 2.0	Mean	Max 32.2 94.1 1.4 2.4		Mean 	Max 	 60.0	Mean 20.4 1.6 	 120.0	19.8 108.0	Mean 25.6 139.9 1.58 2.43	21.6 120.2 1.44 2.15
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Maan Depth (ft) BF Max Depth (ft) BF Cross-sectional Area (ft ²)				UL 	Eq. 	Min 20.7 35.5 0.9 2.0 29.2	Mean 	Max 32.2 94.1 1.4 2.4 32.6	Min 	Mean 	Max 	60.0 1.9 	Mean 20.4 1.6 32.0	 120.0 2.2 	19.8 108.0 1.24 1.96 28.62	Mean 25.6 139.9 1.58 2.43 32.44	21.6 120.2 1.44 2.15 30.77
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Mean Depth (ft) BF Max Depth (ft) BF Cross-sectional Area (ft?) Width/Depth Ratio	 			UL	Eq. 	Min 20.7 35.5 0.9 2.0 29.2 14.6	Mean	Max 32.2 94.1 1.4 2.4 32.6 34.6	Min 11	Mean 	Max 14	60.0 1.9 	Mean 20.4 1.6 32.0 13.0	120.0 2.2 	19.8 108.0 1.24 1.96 28.62 12.6	Mean 25.6 139.9 1.58 2.43 32.44 20.7	21.6 120.2 1.44 2.15 30.77 15.4
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Mean Depth (ft) BF Max Depth (ft) BF Cross-sectional Area (ft ²) Width/Depth Ratio Entrenchment Ratio				UL	Eq. 	Min 20.7 35.5 0.9 2.0 29.2 14.6 1.7	Mean	Max 32.2 94.1 1.4 2.4 32.6 34.6 2.9	Min 	Mean 	Max 14 	60.0 1.9 2.9	Mean 20.4 1.6 32.0 13.0 	120.0 2.2 5.9	19.8 108.0 1.24 1.96 28.62 12.6 4.2	Mean 25.6 139.9 1.58 2.43 32.44 20.7 7.0	21.6 120.2 1.44 2.15 30.77 15.4 5.6
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Max Depth (ft) BF Max Depth (ft) BF Cross-sectional Area (ft ²) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio				UL 	Eq. 	Min 20.7 35.5 0.9 2.0 29.2 14.6 1.7 1.0	Mean	Max 32.2 94.1 1.4 2.4 32.6 34.6 2.9 2.5	Min 11 1	Mean 	Max 14 1.1	60.0 1.9 2.9 1	Mean 20.4 1.6 32.0 13.0 	 120.0 2.2 5.9 1.1	19.8 108.0 1.24 1.96 28.62 12.6 4.2 1.0	Mean 25.6 139.9 1.58 2.43 32.44 20.7 7.0 1.1	21.6 120.2 1.44 2.15 30.77 15.4 5.6 1.0
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Mean Depth (ft) BF Cross-sectional Area (ft?) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio BF Velocity (fps)				UL	Eq. 	Min 20.7 35.5 0.9 2.0 29.2 14.6 1.7	Mean	Max 32.2 94.1 1.4 2.4 32.6 34.6 2.9	Min 11	Mean 	Max 14 	60.0 1.9 2.9	Mean 20.4 1.6 32.0 13.0 	120.0 2.2 5.9	19.8 108.0 1.24 1.96 28.62 12.6 4.2	Mean 25.6 139.9 1.58 2.43 32.44 20.7 7.0	21.6 120.2 1.44 2.15 30.77 15.4 5.6
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Mean Depth (ft) BF Max Depth (ft) BF Cross-sectional Area (ft ²) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio BF Velocity (fps) Pattern				UL 	Eq. 	Min 20.7 35.5 0.9 2.0 29.2 14.6 1.7 1.0	Mean	Max 32.2 94.1 1.4 2.4 32.6 34.6 2.9 2.5	Min 11 1	Mean 	Max 14 1.1	60.0 1.9 2.9 1	Mean 20.4 1.6 32.0 13.0 	 120.0 2.2 5.9 1.1	19.8 108.0 1.24 1.96 28.62 12.6 4.2 1.0	Mean 25.6 139.9 1.58 2.43 32.44 20.7 7.0 1.1	21.6 120.2 1.44 2.15 30.77 15.4 5.6 1.0
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Mean Depth (ft) BF Cross-sectional Area (ft?) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio BF Velocity (fps)				UL 	Eq. 	Min 20.7 35.5 0.9 2.0 29.2 14.6 1.7 1.0 3.5	Mean	Max 32.2 94.1 1.4 2.4 32.6 34.6 2.9 2.5 3.9	Min 11 1 3.5	Mean	Max 14 1,1 5	 60.0 1.9 2.9 1 3.5	Mean 20.4 1.6 32.0 13.0 	120.0 2.2 5.9 1.1 5	19.8 108.0 1.24 1.96 28.62 12.6 4.2 1.0	Mean 25.6 139.9 1.58 2.43 32.44 20.7 7.0 1.1	21.6 120.2 1.44 2.15 30.77 15.4 5.6 1.0
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Mean Depth (ft) BF Ax Depth (ft) BF Cross-sectional Area (ft?) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio BF Velocity (fps) Pattern Channel Beltwidth (ft)				UL 	Eq. 	Min 20.7 35.5 0.9 2.0 29.2 14.6 1.7 1.0 3.5	Mean	Max 32.2 94.1 1.4 32.6 34.6 2.9 2.5 3.9	Min 11 3.5	Mean	Max 14 1.1 5	 60.0 1.9 2.9 1 3.5 	Mean 20.4 32.0 13.0 	 120.0 2.2 5.9 1.1 5 	19.8 108.0 1.24 1.96 28.62 12.6 4.2 1.0 	Mean 25.6 139.9 1.58 2.43 32.44 20.7 7.0 1.1 	21.6 120.2 1.44 2.15 30.77 15.4 5.6 1.0
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Mean Depth (ft) BF Max Depth (ft) BF Cross-sectional Area (ft?) Width/Depth Ratio Entrenchment Ratio Br Velocity (fps) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Wavelength (ft)				UL 	Eq. 	Min 20.7 35.5 0.9 2.0 29.2 14.6 1.7 1.0 3.5	Mean	Max 32.2 94.1 1.4 2.4 32.6 34.6 2.9 2.5 3.9 2.5 3.9	Min 11 3.5 	Mean 	Max 14 5 	 60.0 1.9 2.9 1 3.5 	Mean 20.4 32.0 13.0 	120.0 2.2 5.9 1.1 5	19.8 108.0 1.24 1.96 28.62 12.6 4.2 1.0 	Mean 25.6 139.9 1.58 2.43 32.44 20.7 7.0 1.1 	21.6 120.2 1.44 2.15 30.77 15.4 5.6 1.0
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Mean Depth (ft) BF Mean Depth (ft) BF Cross-sectional Area (ft²) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio BF Velocity (fps) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile				UL	Eq.	Min 20.7 35.5 0.9 2.0 29.2 14.6 1.7 1.0 3.5	Mean	Max 32.2 94.1 1.4 2.4 32.6 34.6 2.9 2.5 3.9 	Min 11 3.5 	Mean	Max 14 5 5 	 60.0 1.9 2.9 1 3.5 3.5	Mean 20.4 1.6 32.0 13.0	120.0 2.2 5.9 1.1 5 7	19.8 108.0 1.24 1.96 28.62 12.6 4.2 1.0	Mean 25.6 139.9 1.58 2.43 32.44 20.7 7.0 1.1 	21.6 120.2 1.44 2.15 30.77 15.4 5.6 1.0
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Mean Depth (ft) BF Mean Depth (ft) BF Cross-sectional Area (ft ²) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio Bank Height Ratio Bank Height Ratio Channel Beltwidth (ft) Radius of Curvature (ft) Radius of Curvature (ft) Meander Wavelength (ft) Profile Riffle Length (ft)				UL	Eq. 	Min 20.7 35.5 0.9 2.0 29.2 14.6 1.7 1.0 3.5	Mean	Max 32.2 94.1 1.4 2.4 32.6 34.6 2.9 2.5 3.9 	Min 11 1 3.5 	Mean	Max 	 60.0 1.9 2.9 1 3.5 3.5	Mean 20.4 32.0 13.0 	120.0 2.2 5.9 1.1 5 7 7	19.8 108.0 1.24 1.96 28.62 12.6 4.2 1.0 	Mean 25.6 139.9 1.58 2.43 32.44 20.7 7.0 1.1 	21.6 120.2 1.44 2.15 30.77 15.4 5.6 1.0
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Mean Depth (ft) BF Max Depth (ft) BF Cross-sectional Area (ft?) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio BF Velocity (fps) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft/ft)				UL	Eq.	Min 20.7 35.5 0.9 2.0 29.2 14.6 1.7 1.0 3.5	Mean	Max 32.2 94.1 1.4 2.4 32.6 32.6 32.6 32.7 32.8 2.9 2.5 3.9	Min 11 3.5 	Mean	Max 14 5 	 60.0 1.9 2.9 1 3.5 3.5	Mean 20.4 32.0 13.0 	120.0 2.2 5.9 1.1 5 7	19.8 108.0 1.24 1.96 28.62 12.6 4.2 1.0	Mean 25.6 139.9 1.58 2.43 32.44 20.7 7.0 1.1	21.6 120.2 1.44 2.15 30.77 15.4 5.6 1.0
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Mean Depth (ft) BF Mean Depth (ft) BF Cross-sectional Area (ft2) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio Br Velocity (fps) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Roll Length (ft) Pool Length (ft)				UL	Eq.	Min 20.7 35.5 0.9 2.0 29.2 14.6 1.7 1.0 3.5	Mean	Max 32.2 94.1 1.4 2.4 34.6 2.9 2.5 3.9 	Min 11 13.5 	Mean	Max 14 5 5 	60.0 1.9 2.9 1 3.5 3.5 0.0078	Mean 20.4 32.0 13.0 	120.0	19.8 108.0 1.24 1.96 28.62 12.6 4.2 1.0	Mean 25.6 139.9 1.58 2.43 32.44 20.7 7.0 1.1	21.6 120.2 1.44 2.15 30.77 15.4 5.6 1.0
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Mean Depth (ft) BF Mean Depth (ft) BF Cross-sectional Area (ft ²) Width/Depth Ratio Entrenchment Ratio Entrenchment Ratio Bank Height Ratio Bry Velocity (fps) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Radius of Curvature (ft) Meander Wavelength (ft) Rafile Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Spacing (ft)				UL	Eq.	Min 20.7 35.5 0.9 2.0 29.2 14.6 1.7 1.0 3.5	Mean	Max 32.2 94.1 1.4 2.4 32.6 32.6 32.6 32.7 32.8 2.9 2.5 3.9	Min 11 3.5 	Mean	Max 14 5 	 60.0 1.9 2.9 1 3.5 3.5	Mean 20.4 32.0 13.0 	120.0 2.2 5.9 1.1 5 7 7	19.8 108.0 1.24 1.96 28.62 12.6 4.2 1.0	Mean 25.6 139.9 1.58 2.43 32.44 20.7 7.0 1.1	21.6 120.2 1.44 2.15 30.77 15.4 5.6 1.0
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Max Depth (ft) BF Max Depth (ft) BF Cross-sectional Area (ft?) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio Bank Height Ratio Bank Height Ratio Fredeoity (fps) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Pool Length (ft) Pool Spacing (ft) Substrate and Transport Parameters				UL	Eq.	Min 20.7 35.5 0.9 2.0 29.2 14.6 1.7 1.0 3.5	Mean	Max 32.2 94.1 1.4 2.4 32.6 2.9 2.5 3.9 	Min 11 13.5 	Mean	Max 14 5 5 	60.0 1.9 2.9 1 3.5 3.5 0.0078 81.6	Mean 20.4 32.0 13.0	120.0 2.2	19.8 108.0 1.24 1.96 28.62 12.6 4.2 1.0	Mean 25.6 139.9 1.58 2.43 32.44 20.7 7.0 1.1	21.6 120.2 1.44 2.15 30.77 15.4 5.6 1.0
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Mean Depth (ft) BF Mean Depth (ft) BF Cross-sectional Area (ft ²) Width/Depth Ratio Entrenchment Ratio Entrenchment Ratio Bank Height Ratio Bry Velocity (fps) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Radius of Curvature (ft) Meander Wavelength (ft) Rafile Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Spacing (ft)				UL	Eq.	Min 20.7 35.5 0.9 2.0 29.2 14.6 1.7 1.0 3.5	Mean	Max 32.2 94.1 1.4 2.4 32.6 2.9 2.5 3.9 	Min 11 13.5 	Mean	Max 14 5 5 	60.0 1.9 2.9 1 3.5 3.5 0.0078 81.6	Mean 20.4 32.0 13.0 	120.0 2.2	19.8 108.0 1.24 1.96 28.62 12.6 4.2 1.0	Mean 25.6 139.9 1.58 2.43 32.44 20.7 7.0 1.1	21.6 120.2 1.44 2.15 30.77 15.6 5.6 1.0
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Mean Depth (ft) BF Mean Depth (ft) BF Cross-sectional Area (ft2) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio Br Velocity (fps) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Spacing (ft) Substrate and Transport Parameters dt 6 / d35 / d50 / d84 / d95				UL	Eq. 	Min 20.7 35.5 0.9 2.0 29.2 14.6 1.7 1.0 3.5 	Mean 	Max 32.2 94.1 1.4 2.4 34.6 2.9 2.5 3.9 	Min 11 3.5 	Mean	Max	60.0 1.9 2.9 1 3.5 3.5 3.5 3.5 8.1.6 8.3/24	Mean 20.4 32.0 13.0 	120.0 2.2	19.8 108.0 1.24 1.96 28.62 12.6 4.2 1.0 	Mean 25.6 139.9 1.58 2.43 32.44 20.7 7.0 1.1	21.6 120.2 1.44 2.15 30.77 15.4 5.6 1.0
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Mean Depth (ft) BF Mean Depth (ft) BF Cross-sectional Area (ft2) Width/Depth Ratio Entrenchment Ratio Entrenchment Ratio Bank Height Ratio BF Velocity (fps) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Spacing (ft) Substrate and Transport Parameters d16 / d35 / d50 / d84 / d95 Reach Shear Stress (competency) Ib/f ² Stream Power (transport capacity) W/m Additional Reach Parameters				UL	Eq. 	Min 20.7 35.5 0.9 2.0 29.2 14.6 1.7 1.0 3.5 	Mean 	Max 32.2 94.1 1.4 2.4 33.6 2.9 2.5 3.9 	Min	Mean	Max	60.0 1.9 2.9 1 3.5 3.5 3.5 81.6 8.3/24	Mean 20.4 32.0 13.0 	120.0 2.2	19.8 108.0 1.24 1.96 28.62 12.6 4.2 1.0	Mean 25.6 139.9 1.58 2.43 32.44 20.7 7.0 1.1 <	21.6 120.2 1.44 2.15 30.77 15.4 5.6 1.0
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Max Depth (ft) BF Max Depth (ft) BF Cross-sectional Area Depth BF Cross-sectional Area (ft?) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio BF Velocity (fps) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Pool Length (ft) Pool Length (ft) Substrate and Transport Parameters df 6 / d35 / d50 / d84 / d95 Reach Shear Stress (competency) Ib/ ² Stream Power (transport capacity) W/m ² Additional Reach Parameters Channel length (ft)				UL	Eq. 	Min 20.7 35.5 0.9 2.0 29.2 14.6 1.7 1.6 1.7 3.5 	Mean 	Max 32.2 94.1 1.4 2.4 32.6 34.6 2.9 2.5 3.9 0/119.3 	Min	Mean	Max 14 5 	60.0 1.9 2.9 1.1 3.5 3.5 0.0078 81.6 81.3/24 	Mean 20.4 32.0 13.0 	 120.0 2.2 5.9 1.1 5 7 0.0104 142.8 0/119.3 	19.8 108.0 1.24 1.96 28.62 12.6 12.6	Mean 25.6 139.9 1.58 2.43 32.44 20.7 7.0 1.1 <	21.6 120.2 1.44 2.15 30.77 15.4 5.6 1.0
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Mean Depth (ft) BF Max Depth (ft) BF Cross-sectional Area (ft?) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio Bank Height Ratio Br Velocity (fps) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Wavelength (ft) Riffle Length (ft) Riffle Length (ft) Riffle Solo (fds / dds / dds Reach Shear Stress (competency) Ib/? Stream Power (transport capacity) Wm 2 Additional Reach Parameters Channel length (ft) Drainage Area (SM)				UL	Eq. 	Min 20.7 35.5 0.9 2.0 29.2 14.6 1.7 1.0 3.5 3.5 	Mean 	Max 32.2 94.1 1.4 2.4 32.6 2.9 2.5 3.9 	Min	Mean	Max 14 5 	60.0 1.9 2.9 1 3.5 0.0078 81.6 81.6	Mean 20.4 32.0 1.6 1.3.0 	2.2 5.9 1.1 5 7 0.0104 142.8 //119.3 	19.8 108.0 1.24 1.96 28.62 12.6 4.2 1.0	Mean 25.6 139.9 1.58 2.43 32.44 20.7 7.0 1.1 <	21.6 120.2 1.44 2.15 30.77 15.4 5.6 1.0
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Max Depth (ft) BF Max Depth (ft) BF Cross-sectional Area (ft?) Width/Depth Ratio Entrenchment Ratio BF Velocity (fps) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio Profile Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Substrate and Transport Parameters d16 / d35 / d50 / d84 / d95 Reach Shear Stress (competency) Ib/P Stream Power (transport capacity) Wm 2 Additional Reach Parameters Channel length (ft) Drainage Area (SM) Rosque Classification Riffle Length (ft) Drainage Area (SM) Rosque Classification Riffle Length (ft) Riffle Stream Power (transport capacity) Wm 2 Additional Reach Parameters				UL	Eq. 	Min 20.7 35.5 0.9 2.0 29.2 14.6 1.7 1.0 3.5 	Mean 	Max 32.2 94.1 1.4 2.4 33.6 2.9 2.5 3.9 0/119.3 	Min	Mean	Max Max 14 14 15	60.0 1.9 1.9 2.9 1 3.5 3.5 81.6 8.3/24	Mean 20.4 32.0 13.0 	120.0 2.2	19.8 108.0 1.24 1.96 28.62 12.6 4.2 1.0	Mean 25.6 139.9 1.58 2.43 32.44 20.7 7.0 1.1 <	21.6 120.2 1.44 2.15 30.77 15.4 5.6 1.0
Dimension - Riffle BF Width (ft) Floodprone Width (ft) BF Mean Depth (ft) BF Max Depth (ft) BF Cross-sectional Area (ft?) Width/Depth Ratio Entrenchment Ratio Bank Height Ratio Bank Height Ratio Br Velocity (fps) Pattern Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Wavelength (ft) Riffle Length (ft) Riffle Length (ft) Riffle Solo (fds / dds / dds Reach Shear Stress (competency) Ib/? Stream Power (transport capacity) Wm 2 Additional Reach Parameters Channel length (ft) Drainage Area (SM)				UL	Eq. 	Min 20.7 35.5 0.9 2.0 29.2 14.6 1.7 1.0 3.5 3.5 	Mean 	Max 32.2 94.1 1.4 2.4 32.6 2.9 2.5 3.9 	Min	Mean	Max 14 5 	60.0 1.9 2.9 1 3.5 0.0078 81.6 81.6	Mean 20.4 32.0 1.6 1.3.0 	2.2 5.9 1.1 5 7 0.0104 142.8 //119.3 	19.8 108.0 1.24 1.96 28.62 12.6 4.2 1.0	Mean 25.6 139.9 1.58 2.43 32.44 20.7 7.0 1.1 <	21.6 120.2 1.44 2.15 30.77 15.4 5.6 1.0

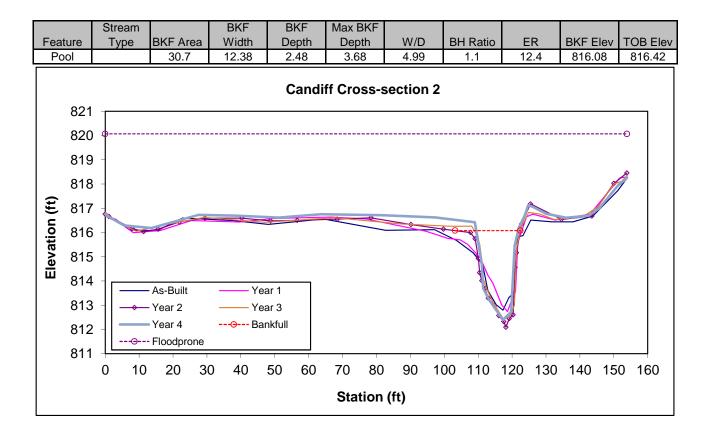

Candiff Creek Restoration Project: DMS	Project	No. 9276	67																	
								Reach: N	13											
Parameter		Cro	ss-sectio Riffle	n 1			Cro	oss-sectio Pool	in 2			Cro	oss-sectio Pool	on 3			Cro	ss-sectic Riffle	on 4	
	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5
Dimension																				
BF Width (ft)	19.49	19.92	23.30	16.80		30.60	19.24	13.49	12.38		33.08	17.96	18.03	17.42		18.17	19.33	25.62	19.95	
BF Mean Depth (ft)	1.09	1.24	1.23	1.09		1.14	1.82		2.48		1.81	3.02	2.78	2.82		1.41	1.61	1.18	1.47	
Width/Depth Ratio	17.82	16.00	15.42	15.43		26.96	10.55	5.70	4.99		18.31	5.95	6.48	6.19		12.86	12.03	21.77	13.55	
BF Cross-sectional Area (ft ²)	21.3	16.1	23.3	18.3		34.7	35.1	31.9	30.7		59.8	54.2	50.1	49.1		25.7	31.1	30.2	29.4	
BF Max Depth (ft)	1.56	1.83	1.23	1.61		3.38	3.99	3.63	3.68		4.35	4.27	4.42	4.44		2.03	2.30	2.21	2.17	
Width of Floodprone Area (ft)	73.64	77.58	73.52	73.02		153.88	153.85	153.95	153.88		124.67	124.70	124.66	124.69		120.72	120.78	120.8	120.71	
Entrenchment Ratio	3.8	3.9	3.9	4.3		5.0	8.0	11.4	12.4		3.8	6.9	6.9	7.2		6.6	6.2	4.7	6.1	
Bank Height Ratio	1.1	1.1	1.1	0.9		1.0	1.0	1.1	1.1		1.0	1.1	1.0	1.0		1.1	1.0	1.0	0.9	
Wetted Perimeter (ft)	21.67	22.40	25.76	18.98		32.88	22.88	18.23	17.34		36.70	24.00	23.59	23.06		20.99	22.55	27.98	22.89	
Hydraulic Radius (ft)	0.98	0.72	0.90	0.96		1.06	1.53	1.75	1.77		1.63	2.26	2.12	2.13		1.22	1.38	1.08	1.28	
Substrate																				
d50 (mm)																				
d84 (mm)																				
D to .		MY-1	(2012)			MY-2	(2013)			MY-3	(2014)			MY-4	(2015)			MY-5	(2016)	
Parameter	Min	Max	M	ed	Min	Max	M	ed	Min	Max	Ì М	ed	Min	Max	M	ed	Min	Max	M	ed
Pattern																				
Channel Beltwidth (ft)																				
Radius of Curvature (ft)																				
Meander Wavelength (ft)																				
Meander Width Ratio																				
Profile																				
Riffle length (ft)																				
Riffle Slope (ft/ft)																				
Pool Length (ft)																				
Pool Spacing (ft)																				
3(7)																				
Additional Reach Parameters																				
Valley Length (ft)			34	15			31	45			34	06			25	608				
Channel Length (ft)			48					327				'94				60				
Sinuosity			1.4				-	41			1.	-			1.					
Water Surface Slope (ft/ft)			0.0					052				052			0.0					
BF Slope (ft/ft)			0.0					073				071				072				
Rosgen Classification				2				0				C				с				


								Reach: N	13											
		Cro	ss-sectio	n 5			Cro	ss-sectio	n 6			Cro	ss-sectio	n 7			Cro	ss-sectio	on 8	
Parameter			Pool					Riffle					Pool					Riffle		
	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5
Dimension																				
BF Width (ft)	35.08	34.93				19.57	22.56	21.12	22.49		41.11	27.78	21.23	19.03		19.35	19.66	19.55	19.15	
BF Mean Depth (ft)	1.61	1.68	1.63	1.41		1.41	1.34	1.24	1.15		1.06		2.19	2.04		1.45	1.38	1.36	1.32	
Width/Depth Ratio	21.78	20.81	20.16			13.78	16.86	17.05	19.51		38.84		9.69	9.31		13.36	14.23	14.42	14.47	
BF Cross-sectional Area (ft ²)	56.5	58.6	53.3	52.0		27.8	30.2	26.2	25.9		43.5		46.5	38.9		28.0	27.1	26.5	25.4	
BF Max Depth (ft)	4.04	4.37	4.27	4.04		2.01	2.45	2.10	2.09		2.57	4.08	4.16	3.58		2.09	2.17	2.16	2.00	
Width of Floodprone Area (ft)		119.06				108.03	108.03		108.00		118.58			118.65		115.23	115.12	115.21	115.20	
Entrenchment Ratio	3.4	3.4	3.6			5.5	4.8	5.1	4.8		2.9		5.6	6.2		6.0	5.9	5.9	6.0	
Bank Height Ratio	1.0	0.9	-			1.0	1.0	-	1.0		1.0	-	-	0.9		1.1	1.1	1.1	1.1	
Wetted Perimeter (ft)	38.30	38.29	36.04	39.59		22.39	25.24	23.60	24.79		43.23		25.61	23.11		22.25	22.42	22.27	21.79	
Hydraulic Radius (ft)	1.48	1.53	1.48	1.31		1.24	1.20	1.11	1.04		1.01	1.51	1.82	1.68		1.26	1.21	1.19	1.17	
Substrate																				
d50 (mm)																				
d84 (mm)																				
Parameter		MY-1 (()			MY-2				MY-3	(/			MY-4				MY-5	()	
	Min	Max	Me	ed	Min	Max	M	ed	Min	Max	M	ed	Min	Max	M	ed	Min	Max	Me	ed
Pattern																				
Channel Beltwidth (ft)																				
Radius of Curvature (ft)																				
Meander Wavelength (ft)																				
Meander Width Ratio																				
Profile																				
Riffle length (ft)																				
Riffle Slope (ft/ft)																				
Pool Length (ft)																				
Pool Spacing (ft)																				
Additional Reach Parameters																				
Valley Length (ft)			34					45				-06				508				
Channel Length (ft)			48	27			48	27			47	'94			35	542				
Sinuosity			1.4	41			1.				1.					41				
Water Surface Slope (ft/ft)			0.00	051			0.0	052				052				051				
BF Slope (ft/ft)			0.0	073			0.0	073			0.0	071			0.0	072				
Rosgen Classification			0)			(2			(C			(С				

								Reach: N	13											
		Cro	oss-sectio	n 9			Cros	ss-sectior	10 r											
Parameter			Pool					Riffle												
	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5										
Dimension																				
BF Width (ft)	24.25	22.72				24.40	19.04	18.23	17.25											
BF Mean Depth (ft)	1.30	1.62		1.93		1.30	1.30	1.12	1.27											
Width/Depth Ratio	18.67	14.05		5.97		14.37	14.59	16.31	13.62											
BF Cross-sectional Area (ft ²)	31.50	36.80		22.20		24.40	24.80	20.40	21.90											
BF Max Depth (ft)	3.24	3.98		2.89		1.83	2.21	1.74	1.92											
Width of Floodprone Area (ft)	88.14	94.15		82.43		117.32	117.30		117.29											
Entrenchment Ratio	3.6	4.1	5.0	7.2		6.3	6.2	6.4	6.8											
Bank Height Ratio	1.0	1.0	-	1.0		1.0	1.1	1.2	1.0											
Wetted Perimeter (ft)	26.85	25.96		15.37		27.00	21.64	20.47	19.79											
Hydraulic Radius (ft)	1.17	1.42	1.22	1.44		0.90	1.15	1.00	1.11											
Substrate																				
d50 (mm)																				
d84 (mm)																				
Parameter			(2012)			MY-2				MY-3					(2015)				(2016)	
	Min	Max	M	ed	Min	Max	M	ed	Min	Max	Μ	led	Min	Max	N	led	Min	Max	N	ed
Pattern																				
Channel Beltwidth (ft)																				
Radius of Curvature (ft)																				
Meander Wavelength (ft)																				
Meander Width Ratio																				
Profile																				
Riffle length (ft)																				
Riffle Slope (ft/ft)																				
Pool Length (ft)																				
Pool Spacing (ft)																				
Additional Reach Parameters																				
Valley Length (ft)			34	-			31	-			-	406				508				
Channel Length (ft)			48				48					794				542				
Sinuosity			1.4				1.					.41				.41				
Water Surface Slope (ft/ft)			0.0				0.0					052				051				
BF Slope (ft/ft)			0.0				0.0					071				072				
Rosgen Classification			()			(2				С				С				

STREAM DATA

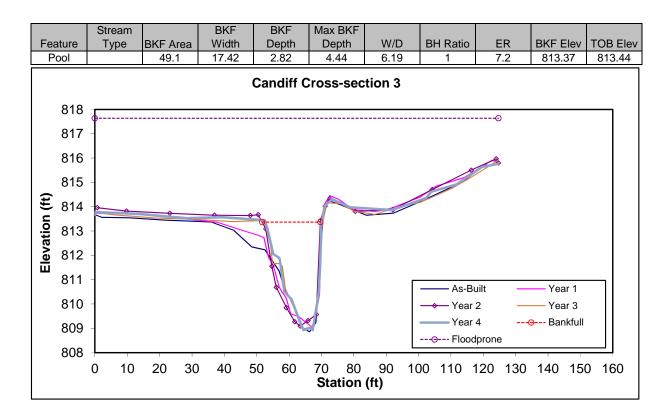
Looking at the Left Bank


Looking at the Right Bank

Fact		Strea				BKF		SKF	Max BK							
Feat Rif		Typ C	e	BKF Are 18.3	a	Width 16.8	_	epth .09	Depth 1.61	W/I 15.4		BH Ratio 0.9	ER 4.3	BKF Elev 817.07	TOB Elev 816.87	
	822	Candiff Cross-section 1														
	821	_														
	820	-														
	819								Q					Ð		
(ft)	818	-							a second							
atio	817	-								8						
Elevation	816	-								Part of the second seco						
1	815	-									<u>∞</u> /	As-Bu	ilt —	— Year 1		
	814	-									-	→ Year 2		— Year 3		
	813	_									-	Year 4		Bankfull		
	812				-	1	1	-	1	1		⊖ Floodp	Dione	1 1		
		0	10	20	30	40	50	60		30 90 on (ft)	10	0 110 ′	120 130	140 150	0 160	

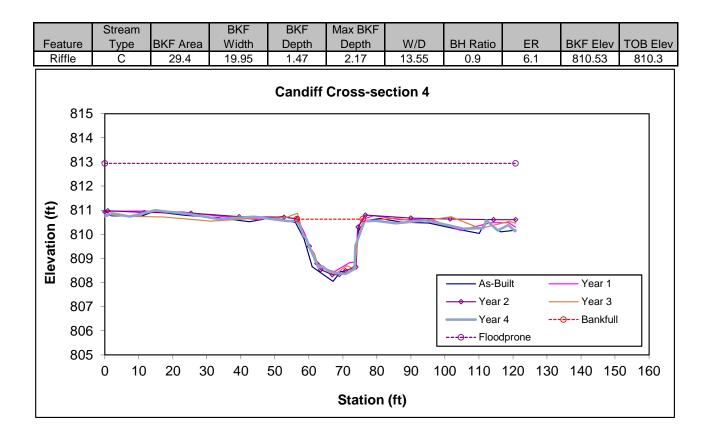
Looking at the Left Bank

Looking at the Right Bank



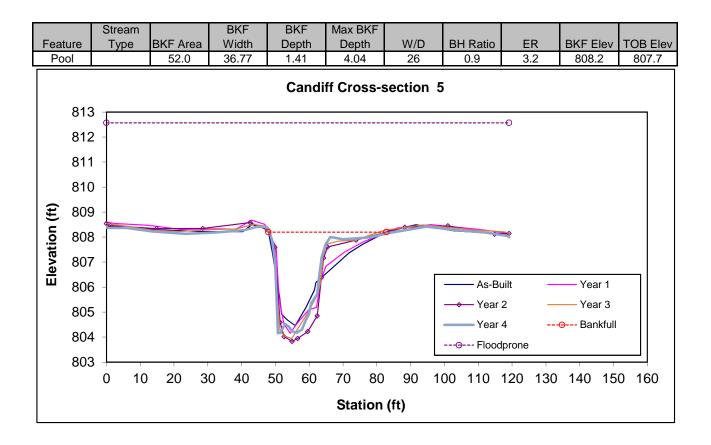
Looking at the Left Bank

Looking at the Right Bank



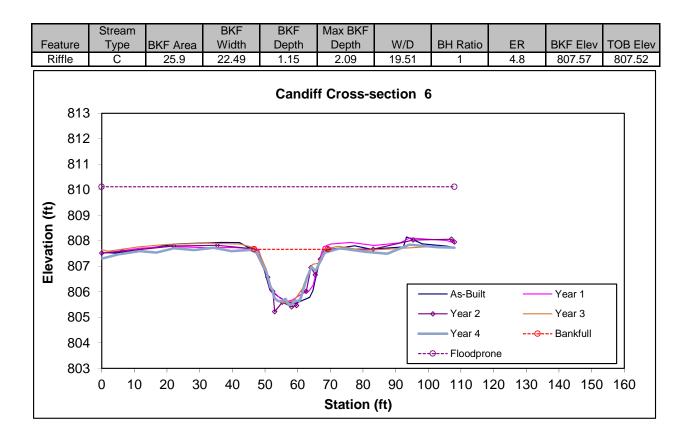
Looking at the Left Bank

Looking at the Right Bank



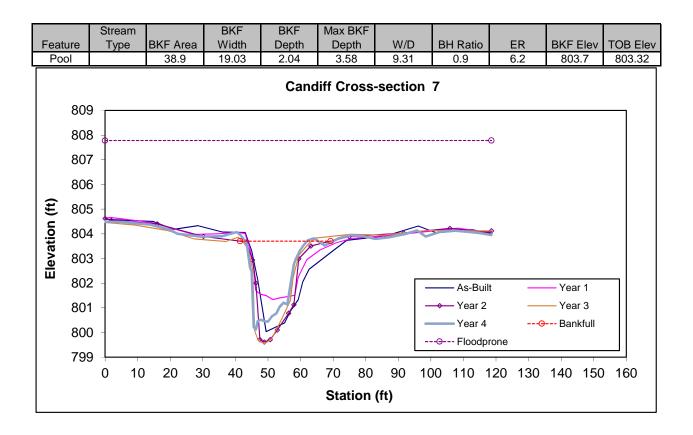
Looking at the Left Bank

Looking at the Right Bank



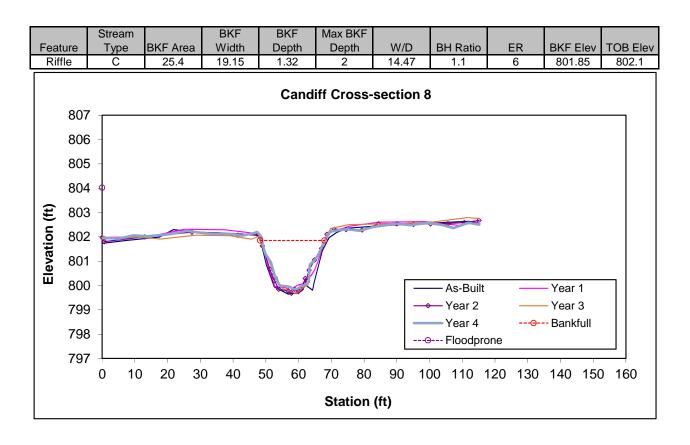
Looking at the Left Bank

Looking at the Right Bank



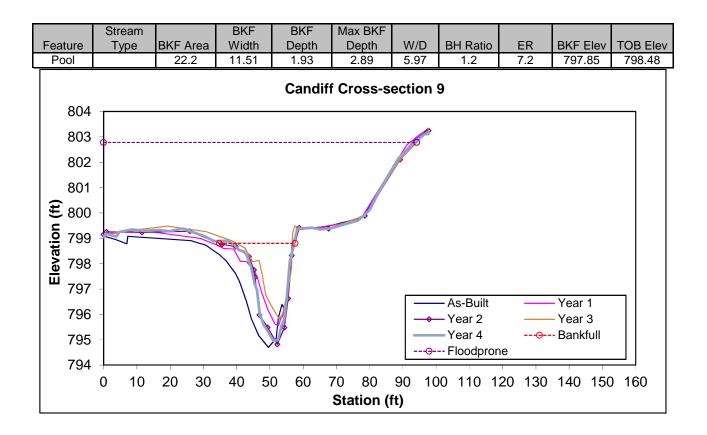
Looking at the Left Bank

Looking at the Right Bank



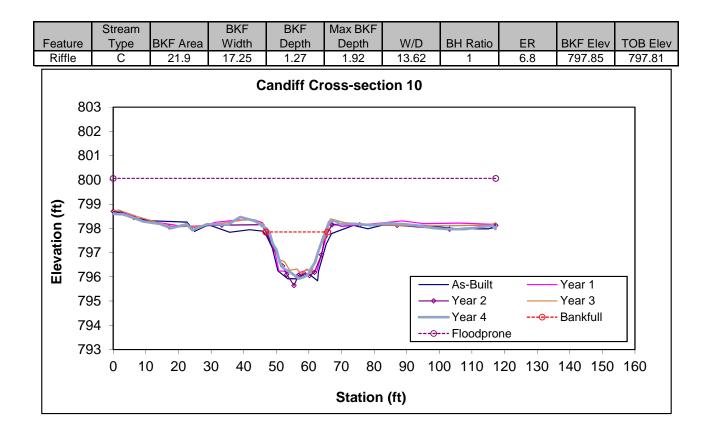
Looking at the Left Bank

Looking at the Right Bank



Looking at the Left Bank

Looking at the Right Bank



Looking at the Left Bank

Looking at the Right Bank

PP1 STA 61+60, Constructed Riffle

PP 2 61+25, Constructed Riffle

PP 3 STA 60+25, Rock J-Hook

PP 4 STA 60+10, Constructed Riffle

PP 5 STA 59+10, Log J-Hook

PP 6 STA 58+85, Constructed Riffle

PP 7 STA 57+65, Log J-Hook

PP 8 STA 57+50, Stream Crossing

PP 9 STA 56+70, Log J-Hook

PP 11 STA 55+40, Log J-Hook

PP 10 STA 56+50, Constructed Riffle

PP 12 STA 55+15, Constructed Riffle

PP 13 STA 53+95, Rock J-Hook

PP 14 STA 53+75, Constructed Riffle

PP 15 STA 52+35, Log J-Hook

PP 16 STA 52+05, Constructed Riffle

PP 17 STA 50+75, Log J-Hook

PP 18 STA 50+40, Constructed Riffle

PP 19 STA 49+15, Log J-Hook

PP 20 STA 48+75, Constructed Riffle

PP 21 STA 47+50, Log J-Hook

PP 22 STA 47+25, Constructed Riffle

PP 23 STA 46+15, Log J-Hook

PP 24 STA 46+00, Constructed Riffle

PP 25 STA 45+25, Rock J-Hook

PP 26 STA 44+90, Constructed Riffle

PP 27 STA 43+50, Log J-Hook

PP 28 STA 43+25, Constructed Riffle

PP 29 STA 42+10, Log J-Hook

PP 30 STA 41+80, Constructed Riffle

PP 31 STA 40+25, Log J-Hook

PP 32 STA 40+00, Constructed Riffle

PP 33 STA 38+50, Rock J-Hook

PP 34 STA 38+25, Constructed Riffle

PP 35 STA 36+75, Rock J-Hook

PP 36 STA 36+45, Constructed Riffle

PP 37 STA 35+05, Log J-Hook

PP 38 STA 34+80, Constructed Riffle

PP 39 STA 33+90, Rock J-Hook

PP 40 STA 33+60, Constructed Riffle

P 41 STA 33+00, Stream Crossing

PP 42 STA 32+10, Log J-Hook

PP 43 STA 32+75, Constructed Riffle

PP 44 STA 30+55, Log J-Hook

PP 45 STA 30+20, Constructed Riffle

PP 47 STA 28+65, Constructed Riffle

PP 46 STA 28+80, Log J-Hook

PP 48 STA 27+75, Log Vein/Pool

PP 49 STA 27+10, Log J-Hook

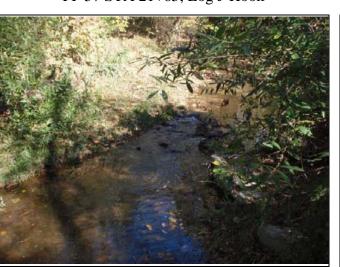
PP 50 STA 26+75, Constructed Riffle

PP 51 STA 25+65, Rock J-Hook

PP 52 STA 25+45, Constructed Riffle

PP 53 STA 24+25, Log J-Hook

PP 54 STA 24+00, Constructed Riffle


PP 55 STA 22+90, Log J-Hook

PP 56 STA 22+70, Constructed Riffle

PP 57 STA 21+65, Log J-Hook

PP 59 STA 17+75, Rock Cross Vane

PP 58 STA 19+75, Rock Cross Vane

M3 crest gauge STA 55+50, April 30, 2015. Crest gauge reading of 2.85 feet.

M3 crest gauge STA 55+50, April 30, 2015. Crest M3 crest gauge bankfull evidence. April 30, 2015. gauge reading of 2.85 feet.

M3 crest gauge STA 55+50, October 19, 2015. Crest gauge reading of 1.60 feet.

M3 crest gauge bankfull evidence. October 19, 2015.

Stream Problem Area 1 - STA 46+50. M3 bank erosion on outer portion of meander bend.

Stream Problem Area 2 - STA 55+50. M3 bank erosion on outer portion of meander bend.

M1 before enhancement activities, April 2015.

UT1 before enhancement activities, April 2015.

M1 before enhancement activities, April 2015.

M1 after enhancement activities, September 2015.

M1 after enhancement activities, September 2015.

M1 after enhancement activities, September 2015.